2021-2022年收藏的精品资料专题14 阅读理解问题第03期中考数学试题分项版解析汇编解析版.doc
《2021-2022年收藏的精品资料专题14 阅读理解问题第03期中考数学试题分项版解析汇编解析版.doc》由会员分享,可在线阅读,更多相关《2021-2022年收藏的精品资料专题14 阅读理解问题第03期中考数学试题分项版解析汇编解析版.doc(17页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、一、选择题二、填空题1(2017河北省)对于实数,我们用符号表示,两数中较小的数,如,因此 ;若,则 【答案】;2或-1考点:1新定义;2实数大小比较;3解一元二次方程-直接开平方法三、解答题2(2017四川省达州市)设A=(1)化简A;(2)当a=3时,记此时A的值为f(3);当a=4时,记此时A的值为f(4);解关于x的不等式:,并将解集在数轴上表示出来【答案】(1) ;(2)x4【解析】试题分析:(1)根据分式的除法和减法可以解答本题;(2)根据(1)中的结果可以解答题目中的不等式并在数轴上表示出不等式的解集试题解析:(1)A= =;(2)a=3时,f(3)=,a=4时,f(4)=,a=
2、5时,f(5)=,即,解得,x4,原不等式的解集是x4,在数轴上表示如下所示:考点:1分式的混合运算;2在数轴上表示不等式的解集;3解一元一次不等式;4阅读型;5新定义3(2017四川省达州市)探究:小明在求同一坐标轴上两点间的距离时发现,对于平面直角坐标系内任意两点P1(x1,y1),P2(x2,y2),可通过构造直角三角形利用图1得到结论:他还利用图2证明了线段P1P2的中点P(x,y)P的坐标公式:,(1)请你帮小明写出中点坐标公式的证明过程;运用:(2)已知点M(2,1),N(3,5),则线段MN长度为 ;直接写出以点A(2,2),B(2,0),C(3,1),D为顶点的平行四边形顶点D
3、的坐标: ;拓展:(3)如图3,点P(2,n)在函数(x0)的图象OL与x轴正半轴夹角的平分线上,请在OL、x轴上分别找出点E、F,使PEF的周长最小,简要叙述作图方法,并求出周长的最小值【答案】(1)答案见解析;(2);(3,3)或(7,1)或(1,3);(3)【解析】试题分析:(1)用P1、P2的坐标分别表示出OQ和PQ的长即可证得结论;(2)直接利用两点间距离公式可求得MN的长;分AB、AC、BC为对角线,可求得其中心的坐标,再利用中点坐标公式可求得D点坐标;试题解析:(1)P1(x1,y1),P2(x2,y2),Q1Q2=OQ2OQ1=x2x1,Q1Q=,OQ=OQ1+Q1Q=x1+=
4、 ,PQ为梯形P1Q1Q2P2的中位线,PQ= =,即线段P1P2的中点P(x,y)P的坐标公式为x=,y=;(2)M(2,1),N(3,5),MN=,故答案为:;A(2,2),B(2,0),C(3,1),当AB为平行四边形的对角线时,其对称中心坐标为(0,1),设D(x,y),则x+3=0,y+(1)=2,解得x=3,y=3,此时D点坐标为(3,3),当AC为对角线时,同理可求得D点坐标为(7,1),当BC为对角线时,同理可求得D点坐标为(1,3),综上可知D点坐标为(3,3)或(7,1)或(1,3),故答案为:(3,3)或(7,1)或(1,3);(3)如图,设P关于直线OL的对称点为M,关
5、于x轴的对称点为N,连接PM交直线OL于点R,连接PN交x轴于点S,连接MN交直线OL于点E,交x轴于点F,又对称性可知EP=EM,FP=FN,PE+PF+EF=ME+EF+NF=MN,此时PEF的周长即为MN的长,为最小,设R(x,),由题意可知OR=OS=2,PR=PS=n,=2,解得x=(舍去)或x=,R(,),解得n=1,P(2,1),N(2,1),设M(x,y),则=, =,解得x=,y=,M(,),MN= =,即PEF的周长的最小值为考点:1一次函数综合题;2阅读型;3分类讨论;4最值问题;5探究型;6压轴题4(2017山东省枣庄市)我们知道,任意一个正整数n都可以进行这样的分解:
6、n=pq(p,q是正整数,且pq),在n的所有这种分解中,如果p,q两因数之差的绝对值最小,我们就称pq是n的最佳分解并规定:F(n)=例如12可以分解成112,26或34,因为1216243,所以34是12的最佳分解,所以F(12)=来源:Zxxk.Com(1)如果一个正整数m是另外一个正整数n的平方,我们称正整数m是完全平方数求证:对任意一个完全平方数m,总有F(m)=1;(2)如果一个两位正整数t,t=10x+y(1xy9,x,y为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为36,那么我们称这个数t为“吉祥数”,求所有“吉祥数”;(3)在(2)所得“吉祥
7、数”中,求F(t)的最大值学科*网【答案】(1)证明见解析;(2)15,26,37,48,59;(3)【解析】试题分析:(1)对任意一个完全平方数m,设m=n2(n为正整数),找出m的最佳分解,确定出F(m)的值即可;(3)利用“吉祥数”的定义分别求出各自的值,进而确定出F(t)的最大值即可试题解析:(1)对任意一个完全平方数m,设m=n2(n为正整数),|nn|=0,nn是m的最佳分解,对任意一个完全平方数m,总有F(m)=1;(2)设交换t的个位上数与十位上的数得到的新数为t,则t=10y+x,t是“吉祥数”,tt=(10y+x)(10x+y)=9(yx)=36,y=x+4,1xy9,x,
8、y为自然数,满足“吉祥数”的有:15,26,37,48,59;来源:Z,xx,k.Com(3)F(15)=,F(26)=,F(37)=,F(48)=,F(59)=,所有“吉祥数”中,F(t)的最大值为考点:1因式分解的应用;2新定义;3因式分解;4阅读型5(2017山东省济宁市)定义:点P是ABC内部或边上的点(顶点除外),在PAB,PBC,PCA中,若至少有一个三角形与ABC相似,则称点P是ABC的自相似点例如:如图1,点P在ABC的内部,PBC=A,PCB=ABC,则BCPABC,故点P是ABC的自相似点请你运用所学知识,结合上述材料,解决下列问题:在平面直角坐标系中,点M是曲线(x0)上
9、的任意一点,点N是x轴正半轴上的任意一点(1)如图2,点P是OM上一点,ONP=M,试说明点P是MON的自相似点;当点M的坐标是(,3),点N的坐标是(,0)时,求点P的坐标;(2)如图3,当点M的坐标是(3,),点N的坐标是(2,0)时,求MON的自相似点的坐标;(3)是否存在点M和点N,使MON无自相似点?若存在,请直接写出这两点的坐标;若不存在,请说明理由【答案】(1)P(,);(2)(1,)或(2,);(3)存在, M(,3),N(,0)【解析】试题分析:(1)由ONP=M,NOP=MON,得出NOPMON,证出点P是MON的自相似点;过P作PDx轴于D,则tanPOD= =,求出AO
10、N=60,由点M和N的坐标得出MNO=90,由相似三角形的性质得出NPO=MNO=90,在RtOPN中,由三角函数求出OP=,OD=,PD=,即可得出答案;(2)作MEx轴于H,由勾股定理求出OM=,直线OM的解析式为y=x,ON=2,MOH=30,分两种情况:作PQx轴于Q,由相似点的性质得出PO=PN,OQ=ON=1,求出P的纵坐标即可;求出MN=2,由相似三角形的性质得出,求出PN=,在求出P的横坐标即可;(2)作MEx轴于H,如图3所示:点M的坐标是(3,),点N的坐标是(2,0),OM= =,直线OM的解析式为y=x,ON=2,MOH=30,分两种情况:如图3所示:P是MON的相似点
11、,PONNOM,作PQx轴于Q,PO=PN,OQ=ON=1,P的横坐标为1,y=1=,P(1,);如图4所示:由勾股定理得:MN=2,P是MON的相似点,PNMNOM,即,解得:PN=,即P的纵坐标为,代入y=x得: =x ,解得:x=2,P(2,);综上所述:MON的自相似点的坐标为(1,)或(2,);(3)存在点M和点N,使MON无自相似点,M(,3),N(,0);理由如下:M(,3),N(,0),OM=ON,MON=60,MON是等边三角形,点P在ABC的内部,PBCA,PCBABC,存在点M和点N,使MON无自相似点考点:1反比例函数综合题;2阅读型;3新定义;4存在型;5分类讨论;6
12、压轴题6(2017江苏省盐城市)(探索发现】如图,是一张直角三角形纸片,B=60,小明想从中剪出一个以B为内角且面积最大的矩形,经过多次操作发现,当沿着中位线DE、EF剪下时,所得的矩形的面积最大,随后,他通过证明验证了其正确性,并得出:矩形的最大面积与原三角形面积的比值为 【拓展应用】如图,在ABC中,BC=a,BC边上的高AD=h,矩形PQMN的顶点P、N分别在边AB、AC上,顶点Q、M在边BC上,则矩形PQMN面积的最大值为 (用含a,h的代数式表示)【灵活应用】如图,有一块“缺角矩形”ABCDE,AB=32,BC=40,AE=20,CD=16,小明从中剪出了一个面积最大的矩形(B为所剪
13、出矩形的内角),求该矩形的面积学科*网【实际应用】如图,现有一块四边形的木板余料ABCD,经测量AB=50cm,BC=108cm,CD=60cm,且tanB=tanC=,木匠徐师傅从这块余料中裁出了顶点M、N在边BC上且面积最大的矩形PQMN,求该矩形的面积【答案】【探索发现】;【拓展应用】;【灵活应用】720;【实际应用】1944【拓展应用】:由APNABC知,可得PN=aPQ,设PQ=x,由S矩形PQMN=PQPN,据此可得;【灵活应用】:添加如图1辅助线,取BF中点I,FG的中点K,由矩形性质知AE=EH20、CD=DH=16,分别证AEFHED、CDGHDE得AF=DH=16、CG=H
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021-2022年收藏的精品资料专题14 阅读理解问题第03期中考数学试题分项版解析汇编解析版 2021 2022 收藏 精品 资料 专题 14 阅读 理解 问题 03 期中 数学试题 分项版 解析
链接地址:https://www.taowenge.com/p-30391121.html
限制150内