圆复习专题ppt课件.ppt
《圆复习专题ppt课件.ppt》由会员分享,可在线阅读,更多相关《圆复习专题ppt课件.ppt(73页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第第2424章圆知识体系复习章圆知识体系复习学习目标:学习目标:1、系统熟悉圆的有关概念。、系统熟悉圆的有关概念。2、巩固有关圆的一些性质和定理。、巩固有关圆的一些性质和定理。3、进一步掌握应用圆的有关知识解决某、进一步掌握应用圆的有关知识解决某些数学问题。些数学问题。本章知识结构图圆的基本性质圆的基本性质圆圆圆的对称性圆的对称性弧、弦圆心角之间的关系弧、弦圆心角之间的关系同弧上的圆周角与圆心角的关系同弧上的圆周角与圆心角的关系与圆有关的位置关系与圆有关的位置关系正多边形和圆正多边形和圆有关圆的计算有关圆的计算点和圆的位置关系点和圆的位置关系切线切线直线和圆的位置关系直线和圆的位置关系三角形的
2、外接圆三角形的外接圆三角形内切圆三角形内切圆等分圆等分圆圆和圆的位置关系圆和圆的位置关系弧长弧长扇形的面积扇形的面积圆锥的侧面积和全面积圆锥的侧面积和全面积学习要求:学习要求:1 1、圆是如何定义的?、圆是如何定义的?2 2、同圆或等圆中的弧、弦、圆心角有什么关、同圆或等圆中的弧、弦、圆心角有什么关系?垂直于弦的直径有什么性质?一条弧所对系?垂直于弦的直径有什么性质?一条弧所对的圆周角和它所对的圆心角有什么关系?的圆周角和它所对的圆心角有什么关系?3 3、点和圆有怎样的位置关系?直线和圆呢?、点和圆有怎样的位置关系?直线和圆呢?圆和圆呢?怎样判断这些位置关系呢?圆和圆呢?怎样判断这些位置关系呢
3、?4 4、圆的切线有什么性质?如何判断一条直线、圆的切线有什么性质?如何判断一条直线是圆的切线?是圆的切线?5 5、正多边形和圆有什么关系?、正多边形和圆有什么关系?6 6、如何计算弧长、扇形面积、圆锥的侧面积、如何计算弧长、扇形面积、圆锥的侧面积和全面积。和全面积。一一.圆的基本概念圆的基本概念:1.圆的定义圆的定义:到定点的距离等于定长的点的到定点的距离等于定长的点的集合叫做圆集合叫做圆.2.有关概念有关概念:(1)弦、直径弦、直径(圆中最长的弦圆中最长的弦)(2)弧、优弧、劣弧、等弧弧、优弧、劣弧、等弧(3)弦心距弦心距O二二. 圆的基本性质圆的基本性质1.圆的对称性圆的对称性:(1)圆
4、是轴对称图形圆是轴对称图形,经过圆心的每一条直经过圆心的每一条直线都是它的对称轴线都是它的对称轴.圆有无数条对称轴圆有无数条对称轴.(2)圆是中心对称图形圆是中心对称图形,并且绕圆心旋转并且绕圆心旋转任何一个角度都能与自身重合任何一个角度都能与自身重合,即圆具即圆具有旋转不变性有旋转不变性.2.垂径定理垂径定理:垂直于弦的直径平分这条弦垂直于弦的直径平分这条弦,并且并且平分弦所对的两条弧平分弦所对的两条弧.ADBPCCD是圆是圆O的直的直径径,CDABAP=BP,ACBC=ADBD=3.同圆或等圆中圆心角、弧、弦之间的关系同圆或等圆中圆心角、弧、弦之间的关系:(1)(1)在同圆或等圆中在同圆或
5、等圆中, ,如果圆心角相等如果圆心角相等, ,那么它那么它所对的弧相等所对的弧相等, ,所对的弦相等所对的弦相等. .(2)(2)在圆中在圆中, ,如果弧相等如果弧相等, ,那么它所对的圆心角那么它所对的圆心角相等相等, ,所对的弦相等所对的弦相等. .(3)(3)在一个圆中在一个圆中, ,如果弦相等如果弦相等, ,那么它所对的弧那么它所对的弧相等相等, ,所对的圆心角相等所对的圆心角相等. .ABDCO COD =AOBABCD=AB=CD1、如图、如图,已知已知 O的半径的半径OA长长为为5,弦弦AB的长的长8,OCAB于于C,则则OC的长为的长为 _.OABC3AC=BC弦心距弦心距半径
6、半径半弦长半弦长反思:反思:在在 O中,若中,若 O的半径的半径r、 圆心到弦的距离圆心到弦的距离d、弦长、弦长a中,中, 任意知道两个量,可根据任意知道两个量,可根据定理求出第三个量:定理求出第三个量:CDBAO2 2:如图,圆如图,圆O O的弦的弦ABAB8 8 , DCDC2 2,直径,直径CEABCEAB于于D D, 求半径求半径OCOC的长。的长。DCEOAB垂径垂径直径直径MNAB,垂足为垂足为E,交弦交弦CD于点于点F.3、如图,、如图,P为为 O的弦的弦BA延长线上一点,延长线上一点,PAAB2,PO5,求,求 O的半径。的半径。关于弦的问题,常常需关于弦的问题,常常需要要过圆
7、心作弦的垂线段过圆心作弦的垂线段,这是一条非常重要的这是一条非常重要的辅辅助线助线。圆心到弦的距离、半径、圆心到弦的距离、半径、弦长弦长构成构成直角三角形直角三角形,便将问题转化为直角三便将问题转化为直角三角形的问题。角形的问题。MAPBOA 4.圆周角圆周角:定义定义:顶点在圆周上,两边和圆相交的顶点在圆周上,两边和圆相交的角,叫做圆周角角,叫做圆周角.性质性质:(1)在同一个圆中在同一个圆中,同弧所对的圆周同弧所对的圆周角等于它所对的圆心角的一半角等于它所对的圆心角的一半.OABCBAC= BOC12OBADEC在同圆或等圆中在同圆或等圆中,同弧或等弧所对的所有的同弧或等弧所对的所有的圆周
8、角相等圆周角相等.相等的圆周角所对的弧相等相等的圆周角所对的弧相等.圆周角的性质圆周角的性质(2)ADB与与AEB 、ACB 是同弧所对的圆周角是同弧所对的圆周角ADB=AEB =ACB性质性质 3:半圆或直径所对的圆周角都半圆或直径所对的圆周角都相等相等,都等于都等于900(直角直角).性质性质4: 900的圆周角所对的弦是圆的直径的圆周角所对的弦是圆的直径.OABCAB是是 O的直径的直径 ACB=900圆周角的性质圆周角的性质:15ABCOD3.6作圆的直径与找作圆的直径与找90度的圆周度的圆周角也是圆里常用的辅助线角也是圆里常用的辅助线2.如图,如图,AB是是 O的直径的直径,BD是是
9、 O的弦,延长的弦,延长BD到点到点C,使使 DC=BD,连接连接AC交交 O与点与点F.(1)AB与与AC的大小有什么关的大小有什么关 系系?为什么为什么?(2)按角的大小分类)按角的大小分类, 请你判断请你判断 ABC属于哪一类三角形,属于哪一类三角形, 并说明理由并说明理由.(05宜昌宜昌)O OF FD DC CB BA A1. 在在 O中,弦中,弦AB所对的圆心角所对的圆心角AOB=100,则,则弦弦AB所对的圆周角为所对的圆周角为_.(05年上海)年上海)500或或1300 3.如图在比赛中如图在比赛中,甲带球向对方球门甲带球向对方球门PQ进攻进攻,当他带球冲到当他带球冲到A点时点
10、时,同伴乙同伴乙已经助攻冲到已经助攻冲到B点点,此时甲是直接射门此时甲是直接射门好好,还是将球传给乙还是将球传给乙,让乙射门好让乙射门好?为什为什么么?PQAB(2)点在圆上点在圆上 (3)点在圆外点在圆外(1)点在圆内点在圆内1.点和圆的位置关系点和圆的位置关系ACB如果规定点与圆心的距离为如果规定点与圆心的距离为d,圆的半径圆的半径为为r,则则d与与r的大小关系为的大小关系为:点与圆的位置关系 d与r的关系 点在圆内点在圆内点在圆上点在圆上点在圆外点在圆外drdrdr三三.与圆有关的位置关系与圆有关的位置关系:7.在在Rt ABC中,中,C=90,BC=3cm,AC=4cm,D为为AB的中
11、点,的中点,E为为AC的中点,以的中点,以B为圆心,为圆心,BC为为半径作半径作 B,问问:(:(1)A、C、D、E与与 B的位置关系如何?的位置关系如何? (2)AB、AC与与 B的位置关系如何?的位置关系如何?EDCAB2.如图如图,OA是是 O的半径的半径,已知已知AB=OA,试探试探索当索当OAB的大小如何变化时点的大小如何变化时点B在圆内在圆内?点点B在圆上在圆上?点点B在圆外在圆外?ABO2.直线和圆的位置关系直线和圆的位置关系:OOOl ll ll l(1) 相离相离:(2) 相切相切:(3) 相交相交:一条直线与一个圆没有公共点一条直线与一个圆没有公共点,叫做叫做直线与这个圆相
12、离直线与这个圆相离.一条直线与一个圆只有一个公共点一条直线与一个圆只有一个公共点,叫叫做直线与这个圆相切做直线与这个圆相切.一条直线与一个圆有两个公共点一条直线与一个圆有两个公共点,叫叫做直线与这个圆相交做直线与这个圆相交.OOl l(1)当直线与圆相离时当直线与圆相离时dr;(2)当直线与圆相切时当直线与圆相切时d =r;(3)当直线与圆相交时当直线与圆相交时dr.直线与圆位置关系的识别直线与圆位置关系的识别:drl ldrOl ldr设圆的半径为设圆的半径为r,圆心到直线的距离为圆心到直线的距离为d,则则:1.与圆有一个公共点的直线。与圆有一个公共点的直线。2.圆心到直线的距离等于圆的半圆
13、心到直线的距离等于圆的半径的直线是圆的切线。径的直线是圆的切线。3.经过半径的外端且垂直于这条经过半径的外端且垂直于这条半径的直线是圆的切线。半径的直线是圆的切线。OAl lOA是半径是半径,OA l l直线直线l l是是 O的切线的切线.切线的性质切线的性质:(1)圆的切线垂直于经过切点的半径圆的切线垂直于经过切点的半径.(2)经过圆心垂直于切线的直线必经过切点经过圆心垂直于切线的直线必经过切点.(3)经过切点垂直于切线的直线必经过圆心经过切点垂直于切线的直线必经过圆心.OAl OA l l直线直线l l是是 O的切线的切线,切切点为点为A切线长定理:切线长定理: 从圆外一点引圆的两条切线,
14、它们从圆外一点引圆的两条切线,它们的切线长相等;这点与圆心的连线平分的切线长相等;这点与圆心的连线平分这两条切线的夹角。这两条切线的夹角。BAPOPA、PB为为 O的切线的切线PA=PB,APO= BPO过过D点作点作DF AC于于F点,然后证明点,然后证明DF等于圆等于圆D的半的半径径BD如图,如图,AB在在 O的直径,点的直径,点D在在AB的延长的延长线上线上,且且BD=OB,点点C在在 O上上,CAB=30.(1)CD是是 O的切线吗?说明你的理由的切线吗?说明你的理由;(2)AC=_,请给出合理的解释,请给出合理的解释. A B C D O 只要连接只要连接OC,而后证明而后证明OC垂
15、直垂直CD不在同一直线上的三点确定一个圆不在同一直线上的三点确定一个圆.OCBA三角形的外接圆与内切圆三角形的外接圆与内切圆:三角形的外心就是三角形各边垂直平分线的交点三角形的外心就是三角形各边垂直平分线的交点.OABC三角形的内心就是三角形各角平分线的交点三角形的内心就是三角形各角平分线的交点.等边三角形的外心与内心重合等边三角形的外心与内心重合.特别的特别的:内切圆半径与外接圆半径的比是内切圆半径与外接圆半径的比是1:2.OABCD二、过三点的圆及外接圆1.过一点的圆有过一点的圆有_个个2.过两点的圆有过两点的圆有_个,这些圆的圆心个,这些圆的圆心的都在的都在_ 上上.3.过三点的圆有过三
16、点的圆有_个个4.如何作过不在同一直线上的三点的圆(或三如何作过不在同一直线上的三点的圆(或三角形的外接圆、找外心、破镜重圆、到三个村角形的外接圆、找外心、破镜重圆、到三个村庄距离相等)庄距离相等)5.锐角三角形的外心在三角形锐角三角形的外心在三角形_,直角三角,直角三角形的外心在三角形形的外心在三角形_ _,钝角钝角三角形的外心在三角形三角形的外心在三角形_。无数无数无数无数0或或1内内外外连结着两点的线段的垂直平分线连结着两点的线段的垂直平分线在斜边的中点上在斜边的中点上OCAB经过三角形的三个顶点的圆叫做三角形的经过三角形的三个顶点的圆叫做三角形的外接圆外接圆,外接圆的圆心叫做三角形的外
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 复习 专题 ppt 课件
限制150内