高等数学教学的几点思考.doc
《高等数学教学的几点思考.doc》由会员分享,可在线阅读,更多相关《高等数学教学的几点思考.doc(7页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、高等数学教学的几点思考高等数学教学的几点思考重庆理工大学数学与统计学院高等数学教研室 陈 忠 金世刚 田 坚【摘 要】在高等数学教学中,数学问题情境要根据具体的教学内容和学生的身心发展需要来设置,教师在以原有的知识为基础之上,以新知识为目标,充分利用数学问题情境活跃课堂气氛,激发学生的学习兴趣,调动学生的学习主动性和创造性,进而促进学生智力和非智力因素的发展。本文探讨了数学的美学意义,在教学中如何创设合适的数学问题情境,培养学生提出问的能力。【关键词】高等数学;问题情境;教学思考笔者从事数学教学工作已20余载,在教学过程中,深刻体会到学生和教学目标的差距。细思之下,总觉得应该把它们说出来,以达
2、到能让学生更好掌握,让同行能间相互借鉴,对教学能有效促进的目的。一、数学的美学意义是教学中必不可少的优质内容数学之美古已有之。早在古希腊时代,毕达哥拉斯学派已经论及数学与美学的关系,毕达哥拉斯本人既是哲学家、数学家,又是音乐理论的始祖,他第一次提出“美是和谐与比例”的观点。我国当代着名数学家徐利治指出:“数学美的含义十分丰富,如数学概念的简单性、统性、结构系统的协调性、对称性,数学命题与数学模型的概括性、典型性与普适性,还有数学中的奇异性等等都是数学美的具体内容”。在教学中,通过创设情境,将抽象的概念具体化、形象化,这样易于学生理解。让学生感受数学是思维的体操。数学思想是我们认识世界的基础和有
3、效工具。例如,在讲数列极限与函数极限的分析定义是用“-N”、“-”语言给出的,定义中具有任意性与确定性,的任意性通过无限多个相对确定性来实现,的确定性决定了N 和的存在性。这种定义精细地刻划了极限过程中变量之间的动态关系,表达了极限概念的本质,并且为极限运算奠定了基础,学过微积分的人无不赞赏它的完美,评价它是最严密、最精炼、最优美的语言。这些,可以在课堂上很激情地讲出来,直接撞击学生的内心,坚定学生对数学的认识,摒弃对数学的误解。又比如,数学中许多理论与人们的直觉相背离,有时让人觉得不可思议,给人以无尽的遐想,有时又带给人一种“山穷水复疑无路,柳岸花明又一春”的绝妙境界,它印证了我国数学家徐利
4、治所说的:“奇异是一种美,奇异到了极限更是一种绝佳的美”。例如,有无限个连续点(无理点)和无限个间断点(有理点)的黎曼函数f(x)=x(为既约真分数)0x=0,1及(0,1)内的无理数;在任一点都不连续狄利克雷函数f(x)=0,xQ,x=1,xQ;处处连续但处处不可微的魏尔斯特拉斯函数f(x)=bcos(x)(其中为奇数,0b1,ab1+),这些函数我们都无法准确地描绘出它的图像。但是黎曼函数、狄利克雷函数和魏尔斯特拉斯函数的美就恰似一幅幅神奇的抽象画,虽奇异古怪,却是数学家们依靠想象而产生的艺术精品。这些内容对于大一新生来说,无疑是很新鲜很有吸引力的,能起到激发强烈的求知欲的效果的。二、创设
5、合适的数学问题情境,培养学生提出问题的能力在高等数学教学活动中,只有使学生意识到问题的存在,才能激发他们学习中思维的火花。学生的问题意识越强烈,他们的思维就越活跃、越深刻、越富有创造性。而能让学生提出问题,则需要一定的情景创设。比如,在讲授过程中,举例时可以卖点关子,甚至故意做错,将问题摆在学生面前,促使学生思考。这样,往往有事半功倍的效果。比如,讲中值定理中证明柯西中值定理时,故意用拉格朗日中值定理的结论作比来证明。然后,指出其错误,再进行证明,使学生既加深了对辅助函数引入的重要,又对定理本身有着深刻的理解和记忆。在高等数学的教学中,我们知道很多同学反映数学单调、枯燥、不好学。实际上,情境创
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高等数学 教学 思考
限制150内