2022年神经网络建模及Matlab中重要的BP网络函数 .pdf
《2022年神经网络建模及Matlab中重要的BP网络函数 .pdf》由会员分享,可在线阅读,更多相关《2022年神经网络建模及Matlab中重要的BP网络函数 .pdf(14页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、神经网络建模及Matlab 中重要的 BP 网络函数一、神经组织的基本特征1细胞体是一个基本的初等信号处理器,轴突是信号的输出通路,树突是信号的输入通路。信号从一个神经细胞经过突触传递到另一个细胞。2不同的神经元之间有不同的作用强度,称为联接强度。当某细胞收到信号时,它的电位发生变化,如果电位超过某一阈值时,该细胞处于激发态,否则处于抑制状态。3两神经元之间的联接强度随其激发与抑制行为相关性的时间平均值正比变化,也就是说神经元之间的联接强度不是一成不变的。这就是生物学上的Hebb 律。二、 人工神经元的 M-P模型(McCulloch 、 Pitts,1943)1 构造一个模拟生物神经组织的人
2、工神经网络的三要素:(1) 对单个神经元给出定义;(2) 定义网络结构:决定神经元数量及连接方式;名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 1 页,共 14 页 - - - - - - - - - tjijtSw)((3) 给出一种方法,决定神经元之间的联接强度。2M-P 模型其中, t 表示时间Si(t)表示第 i 个神经元在t 时刻的状态, Si(t)=1 表示处于激发态, Si(t)=0 表示处于抑制态wij表示第 j 个神经元到第i 个神经元的联接强度,称之为权,可正可
3、负表示第 i 个神经元在t 时刻所接收到的所有信号的线性迭加。i表示神经元i 的阈值 , 可以在模型中增加一个 Sk(t)=1 神经元 k,并且 wik=-i,则阈值可归并到和号中去。注:1M-P 神经元虽然简单,但可以完成任何计算。2神经元的状态可以取0,1中的连续值,如用以下函数代替 (x): 00011xxxtSwtSijjiji)()()(名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 2 页,共 14 页 - - - - - - - - - jjijhtSwhehg)()(
4、0112三、多层前传网络1.特点:相邻层全互连同层没有连接输出与输入没有直接联系2各层神经元个数的确定输入层、 输出层的神经元个数由研究对象的输入、输出信息来确定。隐含层:101llnnnIOH,3符号说明:表示一个确定的已知样品的标号;i, j, k:分别对应于输出层、隐含层、输入层的下标;:iO将第个样品的原始数据输入网络时,相应输出单元状态;:jH将第个样品的原始数据输入网络时,相应隐含单元状态;:kI将第个样品的原始数据输入网络时,相应输入单元数据;wij:从隐含层第 j 个神经元到输出层第i 个神经元的联接强度;i Wi1 Wi2 Wi3 I2H2H3I3O1H1I4I1O2输出层
5、Oi输入层 Ik隐含层 Hj权 Wjk权 Wij名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 3 页,共 14 页 - - - - - - - - - wjk:从输入层第 k 个神经元到隐含层第j 个神经元的联接强度;4网络数据流程对应于输入层的输入:InIII,21隐单元 j 的输入是:kkjkjIwh对应的输出是:)()(kkjkjjIwghgH输出单元 i 收到的迭加信号是:jkkjkijjjijiIwgwHwo)(输出单元 i 的输出是:) )()()(jkkjkijjji
6、jiiIwgwgHwgogO显然输出是所有权w=wij,wjk 的函数四、向后传播算法 (Back-Propagation)设样品 在输出单元i 上的理想输出为iT,则函数:,)()(ikkjkjijiiiiIwgwgTOTwE221221表示了在一定的权下,理想输出与实际输出的差异。因此,确定权 w 的问题化为求E(w) 的极小值问题。可以采用最速下降算法。最速下降算法步骤:1)任取初始点w0,计算出 w0的负梯度方向:-E(w0) 2)取新点 w1=w0+w=w0-E(w0),使 E(w1)E(w0) 3)判断其中 w 的计算如下:对于隐单元到输出单元的权的修正量为名师资料总结 - - -
7、精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 4 页,共 14 页 - - - - - - - - - jijiiiwEijHHhgOTwij)(其中)(iiiiOThg对于输入单元到隐单元的权的修正量为kjkjijiikjijiiiiwHHEwEjkIIhgwIhgwhgOTwjkjjjk)()()(,其中iijijjwhg)(五、Matlab 中 BP 神经网络的实现1BP神经网络的初始化各层神经元个数, 各层神经元之间的连接强度, 各层神经元的传递函数1). 人工初始化如下例例 1.有一个三输入两层
8、神经网络,隐层有两个对数 S形神经元 ,输出层有一个正切S 形神经元 , 用于预测两个一元目标矢量 . p=0 0.5 -0.2;1 0.2 0.3;%输入t=0.5,-0.5;%理想输出r=3;s1=2;s2=1;%输入层、隐层、输出层的神经元个数w1=rands(s1,r);输入层到隐层的连接强度b1=rands(s1,1); 隐层的阈值w2=rands(s2,s1); 隐层到输出层的连接强度b2=rands(s2,1);输出层的阈值名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第
9、 5 页,共 14 页 - - - - - - - - - lr=1; 学习速率for epoch=1:40 训练网络 40 次 a1=logsig(w1*p,b1); 隐层的输出 a2=tansig(w2*a1,b2); 输出层的输出 e=t-a2; 与理想输出的误差 d2=deltatan(a2,e); 输出层的值 d1=deltalog(a1,d2,w2); 隐层的值 dw1,db1=learnbp(p,d1,lr); 进行学习,获取隐层连接强度、阈值的调整值 w1=w1+dw1; 调整隐层的连接强度 b1=b1+db1; 调整隐层的阈值 dw2,db2=learnbp(a1,d2,lr
10、); 进行学习,获取输出层连接强度、阈值的调整值 w2=w2+dw2; 调整输出层的连接强度 b2=b2+db2; 调整输出层阈值end; a1=logsig(w1*p,b1); 学习后,对网络进行验证a2=tansig(w2*a1,b2) 2)调用系统提供的函数格式:w1,b1,w2,b2=initff(p,s1,f1,s2,f2) w1,b1,w2,b2=initff(p,s1,f1,t,f2) 功能:至多三层的 BP网络初始化, 得到每层的权值和阈值。说明:1)P为输入向量, P 中每一行必须包含网络期望输入的最大值和最小值,这样才能合理地初始化连接强度与阈值。2)T为理想输出向量名师资
11、料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 6 页,共 14 页 - - - - - - - - - 3)S1为隐层的神经元数, S2为输出层的神经元数,可用理想输出向量T 代替 S2,此时 S2T 向量的行数4)F1为隐层传递函数名, F2 为输出层传递函数名例2例 2应用两层 BP网络进行函数逼近,其中隐层神经元个数设为5 个clf reset; figure(gcf) colordef(gcf,none) setfsize(500,200); echo on clc %INITF
12、F - Initializes a feed-forware network. %TRAINBP - Trains a feed-forward network with backpropagation.% SIMUFF - Simulates a feed-forward network. % FUNCTION APPROXIMATION WITH TANSIG/PURELIN NETWORK: %Using the above functions two-layer network is trained %to respond to specific inputs with target
13、outputs. % DEFINING A VECTOR ASSOCATION PROBLEM % = %P defines twenty-one 1-element input vectors (column vectors):P = -1:.1:1; % T defines the associated 1-element targets (column vectors): T=-.9602 -.5770 -.0729 .3771 .6405 .6600 .4609 . .1336 -.2013 -.4344 -.5000 -.3930 -.1647 .0988 . .3072 .3960
14、 .3449 .1816 -.0312 -.2189 -.3201; % PLOTTING THE DATA POINTS % = % Here the data points are plotted: plot(P,T,+); title(Training Vectors); xlabel(Input Vector P); ylabel(Target Vector T); 名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 7 页,共 14 页 - - - - - - - - - %
15、The function the neural network learns must pass through % these data points. pause % Strike any key to design the network.clc % DESIGN THE NETWORK % = % A two-layer TANSIG/PURELIN network will be trained. %The number of hidden TANSIG neurons should reflect the % complexity of the problem. S1 = 5; %
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022年神经网络建模及Matlab中重要的BP网络函数 2022 神经网络 建模 Matlab 重要 BP 网络 函数
限制150内