2022年人教版高中数学必修全册教案 .pdf
《2022年人教版高中数学必修全册教案 .pdf》由会员分享,可在线阅读,更多相关《2022年人教版高中数学必修全册教案 .pdf(27页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、按住 Ctrl 键单击鼠标打开教学视频动画全册播放人教版数学必修二第一章空间几何体重难点解析第一章课文目录11 空间几何体的结构12 空间几何体的三视图和直观图13 空间几何体的表面积与体积重难点:1、让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征。2、画出简单组合体的三视图。3、用斜二测画法画空间几何值的直观图。4、柱体、锥体、台体的表面积和体积计算,台体体积公式的推导。5、了解推导球的体积和面积公式所运用的基本思想方法。知识结构 :表面积体积度 量空间几何体柱体球体锥体台体中心投影平行投影棱柱圆柱棱锥圆锥棱台圆台三视图直观图一、空间几何体的结构、三视图和直观图1柱、锥、台、球
2、的结构特征(1)柱棱柱: 一般的,有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行, 由这些面所围成的几何体叫做棱柱;棱柱中两个互相平行的面叫做棱柱的底面, 简称为底;其余各面叫做棱柱的侧面;相邻侧面的公共边叫做棱柱的侧棱;侧面与底面的公共顶点叫做棱柱的顶点。底面是三角形、四边形、五边形, 的棱柱分别叫做三棱柱、四棱柱、五棱柱,圆柱:以矩形的一边所在的直线为旋转轴,其余边旋转形成的曲面所围成的几何体叫做圆柱; 旋转轴叫做圆柱的轴;垂直于轴的边旋转而成的曲面叫做圆柱的侧面;无论旋转到什么位置,不垂直于轴的边都叫做圆柱侧面的母线。棱柱与圆柱统称为柱体;(2)锥棱锥: 一
3、般的有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥;这个多边形面叫做棱锥的底面或底;有公共顶点的各个三角形面叫做棱锥的侧面;各侧面的公共顶点叫做棱锥的顶点;相邻侧面的公共边叫做棱锥的侧棱。名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 1 页,共 27 页 - - - - - - - - - 底面是三角锥、四边锥、五边锥, 的棱柱分别叫做三棱锥、四棱锥、五棱锥,圆锥:以直角三角形的一条直角边所在的直线为旋转轴,其余两边旋转形成的曲面所围成的几何体
4、叫做圆锥;旋转轴为圆锥的轴;垂直于轴的边旋转形成的面叫做圆锥的底面;斜边旋转形成的曲面叫做圆锥的侧面。棱锥与圆锥统称为锥体。(3)台棱台: 用一个平行于底面的平面去截棱锥,底面和截面之间的部分叫做棱台;原棱锥的底面和截面分别叫做棱台的下底面和上底面;棱台也有侧面、侧棱、顶点。圆台: 用一个平行于底面的平面去截圆锥,底面和截面之间的部分叫做圆台;原圆锥的底面和截面分别叫做圆台的下底面和上底面;圆台也有侧面、母线、轴。圆台和棱台统称为台体。(4)球以半圆的直径所在的直线为旋转轴,半圆面旋转一周形成的几何体叫做球体,简称为球;半圆的圆心叫做球的球心,半圆的半径叫做球的半径,半圆的直径叫做球的直径。(
5、5)组合体由柱、锥、台、球等几何体组成的复杂的几何体叫组合体。几种常凸多面体间的关系一些特殊棱柱、棱锥、棱台的概念和主要性质:名称棱柱直棱柱正棱柱图形定义有两个面互相平行,而其余每相邻两个面的交线都互相平行的多面体侧棱垂直于底面的棱柱底面是正多边形的直棱柱侧棱平行且相等平行且相等平行且相等侧面的形状平行四边形矩形全等的矩形名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 2 页,共 27 页 - - - - - - - - - 对角面的形状平行四边形矩形矩形平行于底面的截面的形状与底面
6、全等的多边形与底面全等的多边形与底面全等的正多边形名称棱锥正棱锥棱台正棱台图形定义有 一 个 面 是 多边形, 其余各面是 有 一 个 公 共顶 点 的 三 角 形的多面体底 面 是 正 多 边形,且顶点在底面 的 射 影 是 底面 的 射 影 是 底面 和 截 面 之 间的部分用 一 个 平 行 于棱 锥 底 面 的 平面去截棱锥, 底面 和 截 面 之 间的部分由 正 棱 锥 截 得的棱台侧棱相 交 于 一 点 但不一定相等相 交 于 一 点 且相等延 长 线 交 于 一点相 等 且 延 长 线交于一点侧面的形状三角形全 等 的 等 腰 三角形梯形全 等 的 等 腰 梯形对角面的形状三角形
7、等腰三角形梯形等腰梯形平行于底的截面形状与 底 面 相 似 的多边形与 底 面 相 似 的正多边形与 底 面 相 似 的多边形与 底 面 相 似 的正多边形其他性质高过底面中心;侧棱与底面、 侧面与底面、 相邻两 侧 面 所 成 角都相等两 底 中 心 连 线即高; 侧棱与底面 、 侧 面 与 底面、相邻两侧面所成角都相等几种特殊四棱柱的特殊性质:名称特殊性质平行六面体底面和侧面都是平行四边行;四条对角线交于一点,且被该点平分直平行六面体侧棱垂直于底面,各侧面都是矩形;四条对角线交于一点,且被该点平分长方体底面和侧面都是矩形;四条对角线相等, 交于一点,且被该点平分正方体棱长都相等,各面都是正
8、方形四条对角线相等,交于一点,且被该点平分名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 3 页,共 27 页 - - - - - - - - - 2空间几何体的三视图三视图是观测者从不同位置观察同一个几何体,画出的空间几何体的图形。他具体包括:(1)正视图:物体前后方向投影所得到的投影图;它能反映物体的高度和长度;(2)侧视图:物体左右方向投影所得到的投影图;它能反映物体的高度和宽度;(3)俯视图:物体上下方向投影所得到的投影图;它能反映物体的长度和宽度;三视图画法规则:高平齐:主
9、视图与左视图的高要保持平齐长对正:主视图与俯视图的长应对正宽相等:俯视图与左视图的宽度应相等3空间几何体的直观图(1)斜二测画法建立直角坐标系,在已知水平放置的平面图形中取互相垂直的OX ,OY ,建立直角坐标系;画出斜坐标系,在画直观图的纸上(平面上) 画出对应的OX,OY, 使X OY=450(或 1350) ,它们确定的平面表示水平平面;画对应图形,在已知图形平行于X 轴的线段,在直观图中画成平行于X轴,且长度保持不变;在已知图形平行于Y轴的线段,在直观图中画成平行于Y轴,且长度变为原来的一半;擦去辅助线,图画好后,要擦去X轴、 Y轴及为画图添加的辅助线(虚线)。(2)平行投影与中心投影
10、平行投影的投影线是互相平行的,中心投影的投影线相交于一点。注意:画水平放置的多边形的直观图的关键是确定多边形顶点的位置,因为多边形顶点的位置一旦确定, 依次连结这些顶点就可画出多边形来,因此平面多边形水平放置时,直观图的画法可以归结为确定点的位置的画法。强调斜二测画法的步骤。例题讲解: 例 1 将正三棱柱截去三个角(如图1 所示ABC, ,分别是GHI三边的中点)得到几何体如图 2,则该几何体按图 2 所示方向的侧视图 (或称左视图) 为()E F D I A H G B C E F D A B C 侧视图 1 图 2 B E AB E BB E CB E D名师资料总结 - - -精品资料欢
11、迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 4 页,共 27 页 - - - - - - - - - C1D1B1A1ODCBA 例 2 在正方体 ABCD A1B1C1D1中,E,F分别为棱 AA1,CC1的中点,则在空间中与三条直线 A1D1,EF ,CD都相交的直线()A不存在B有且只有两条C有且只有三条D有无数条 例 3正方体 ABCD_ A1B1C1D1的棱长为 2,点 M 是 BC 的中点, 点 P 是平面 ABCD 内的一个动点,且满足PM=2 ,P 到直线 A1D1的距离为5,则点 P的轨迹是()
12、A.圆B.双曲线C.两个点D.直线解析:点 P 到 A1D1的距离为5,则点 P 到 AD 的距离为 1,满足此条件的P 的轨迹是到直线 AD 的距离为 1 的两条平行直线,又2PM,满足此条件的P 的轨迹是以M 为圆心,半径为2 的圆,这两种轨迹只有两个交点 . 故点 P 的轨迹是两个点。选项为C。点评: 该题考察空间内平面轨迹的形成过程,考察了空间想象能力。 例 4两相同的正四棱锥组成如图1 所示的几何体,可放棱长为1 的正方体内,使正四棱锥的底面ABCD与正方体的某一个平面平行,且各顶点均在正方体的面上,则这样的几何体体积的可能值有()A1 个B2 个C3 个D无穷多个解析: 由于两个正
13、四棱锥相同,所以所求几何体的中心在正四棱锥底面正方形ABCD中心,有对称性知正四棱锥的高为正方体棱长的一半,影响几何体体积的只能是正四棱锥底面正方形 ABCD 的面积,问题转化为边长为1的正方形的内接正方形有多少种,所以选D。点评:本题主要考查空间想象能力,以及正四棱锥的体积。正方体是大家熟悉的几何体,它的一些内接或外接图形需要一定的空间想象能力,要学会将空间问题向平面问题转化。题型 2:空间几何体的定义 例 5长方体1111ABCDA B C D的 8 个顶点在同一个球面上,且AB=2 ,AD=3,11AA,则顶点 A、 B 间的球面距离是( ) A42B22C2D22解析:1122 2,B
14、DACR2,R设11,BDACO则2,OAOBR,2AOB2,2lR故 选.点评: 抓住本质的东西来进行判断,对于信息要进行加工再利用。名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 5 页,共 27 页 - - - - - - - - - 例 6已知直线m,n 和平面,满足,amnm,则( ) .An,/.nB或nnC.,/.nD或n解析: 易知 D正确 .点评: 对于空间几何体的定义要有深刻的认识,掌握它们并能判断它们的性质。题型 3:空间几何体中的想象能力 例 7如图所示,四棱
15、锥PABCD的底面ABCD是边长为 1 的菱形,060BCD,E 是 CD 的中点, PA底面 ABCD ,3PA。(I)证明:平面PBE平面 PAB;(II)求二面角ABEP 和的大小。解析: 解法一( I)如图所示 , 连结,BD由ABCD是菱形且060BCD知,BCD是等边三角形 . 因为 E 是 CD 的中点,所以,BECD又,ABCD/ /所以,BEAB又因为 PA平面 ABCD ,BE平面 ABCD ,所以,BEPA而,ABAPA因此BE平面 PAB. 又BE平面 PBE,所以平面PBE平面 PAB. ( II)由( I)知,BE平面 PAB, PB平面 PAB, 所以.PBBE又
16、,BEAB所以PBA是二面角ABEP的平面角在RtPAB中, tan3,60.PAPBAPBAAB故二面角ABEP的大小为60.解法二:如图所示,以 A 为原点,建立空间直角坐标系则相关各点的坐标分别是(0 0 0),A,(1 0 0),B ,33(0),22C,13(0),22D,(0 03),P,3(10).2E ,(I)因为3(0,0),2BE,平面 PAB 的一个法向量是0(0 1 0),n, ,所以BE和0n共线 . PABCED名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - -
17、第 6 页,共 27 页 - - - - - - - - - 从而BE平面 PAB. 又因为BE平面 PBE,所以平面PBE平面 PAB. (II ) 易知3(10,3),(0,0),2PBBE,设1n111()xyz, ,是平面 PBE 的一个法向量 , 则由1100n PBn BE,得11111103030002xyzxyz,所以1113.yxz=0,故可取1n( 3 01).,而平面 ABE 的一个法向量是2(0 0 1).n,于是 ,1212121cos,.2| |n nn nnn故二面角ABEP的大小为60.点评: 解决此类题目的关键是将平面图形恢复成空间图形,较强的考察了空间想象能
18、力。 例 8如图,在三棱锥PABC中,2ACBC,90ACB,APBPAB,PCAC()求证:PCAB;()求二面角BAPC的大小解析:解法一:()取AB中点D,连结PDCD,APBP,PDABACBC,CDABPDCDD,AB平面PCDPC平面PCD,PCAB()ACBC,APBP,APCBPC又PCAC,PCBC又90ACB,即ACBC,且ACPCC,BC平面PAC取AP中点E连结BECE,ABBP,BEAPEC是BE在平面PAC内的射影,CEAPA C B P A C B D P A C B E P 名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - -
19、 - - - - - - 名师精心整理 - - - - - - - 第 7 页,共 27 页 - - - - - - - - - BEC是二面角BAPC的平面角在BCE中,90BCE,2BC,362BEAB,6sin3BCBECBE二面角BAPC的大小为6arcsin3解法二:()ACBC,APBP,APCBPC又PCAC,PCBCACBCC,PC平面ABCAB平面ABC,PCAB()如图,以C为原点建立空间直角坐标系Cxyz则(0 0 0)(0 2 0)(2 0 0)CAB,设(0 0)Pt, ,2 2PBAB,2t,(0 0 2)P,取AP中点E,连结BECE,ACPC,ABBP,CEAP
20、,BEAPBEC是二面角BAPC的平面角(011)E, ,(011)EC, ,(211)EB, ,23cos326EC EBBECEC EB二面角BAPC的大小为3arccos3点评: 在画图过程中正确理解已知图形的关系是关键。通过识图、想图、画图的角度考查了空间想象能力。 而对空间图形的处理能力是空间想象力深化的标志,是高考从深层上考查空A C B P z x y E 名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 8 页,共 27 页 - - - - - - - - - 间想象能
21、力的主要方向。 例 9画正五棱柱的直观图,使底面边长为3cm 侧棱长为 5cm。解析: 先作底面正五边形的直观图,再沿平行于Z 轴方向平移即可得。作法:(1)画轴:画 X,Y, Z轴,使 XOY=45(或 135) ,XOZ=90。(2)画底面:按X轴, Y轴画正五边形的直观图ABCDE 。(3)画侧棱:过A、 B、C、D、E 各点分别作Z轴的平行线,并在这些平行线上分别截取 AA ,BB, CC, DD, EE。(4)成图:顺次连结A, B, C, D, F,加以整理,去掉辅助线,改被遮挡的部分为虚线。点评: 用此方法可以依次画出棱锥、棱柱、棱台等多面体的直观图。 例 10CBA是正 ABC
22、 的斜二测画法的水平放置图形的直观图,若CBA的面积为3,那么 ABC 的面积为 _。解析 :62。点评:该题属于斜二测画法的应用,解题的关键在于建立实物图元素与直观图元素之间的对应关系。特别底和高的对应关系。 例 11如图,在棱长为1 的正方体ABCDA B C D中, AP=BQ=b (0b1) ,截面PQEFA D,截面 PQGHAD()证明:平面PQEF 和平面 PQGH 互相垂直;()证明:截面PQEF 和截面 PQGH 面积之和是定值,并求出这个值;()若D E与平面 PQEF 所成的角为45,求D E与平面 PQGH 所成角的正弦值本小题主要考查空间中的线面关系,面面关系, 解三
23、角形等基础知识,考查空间想象能力与逻辑思维能力。解析:解法一:()证明:在正方体中,ADA D,ADAB,又由已知可得PFA D,PHAD,PQAB,所以PHPF,PHPQ,所以PH平面PQEF所以平面PQEF和平面PQGH互相垂直()证明:由()知22PFAPPHPA,又截面 PQEF 和截面 PQGH 都是矩形,且PQ=1,所以截面PQEF 和截面 PQGH 面积之和是A B C D E F P Q H ABCDG A B C D E F P Q H ABCDG N M 名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精
24、心整理 - - - - - - - 第 9 页,共 27 页 - - - - - - - - - (22)2APPAPQ,是定值(III )解:连结BC交 EQ 于点 M因为PHAD,PQAB,所以平面ABC D和平面 PQGH 互相平行,因此D E与平面 PQGH 所成角与D E与平面ABC D所成角相等与()同理可证EQ平面 PQGH,可知 EM平面ABC D,因此 EM 与D E的比值就是所求的正弦值设AD交 PF 于点 N,连结 EN,由1FDb知222(1)2(1)22D EbNDb,因为AD平面 PQEF,又已知D E与平面 PQEF 成45角,所以2D END,即2222(1)(
25、1)222bb,解得12b,可知 E 为 BC 中点所以 EM=24,又23(1)22D Eb,故D E与平面 PQCH 所成角的正弦值为26EMD E解法二:以 D 为原点,射线DA,DC, DD分别为 x,y,z 轴的正半轴建立如图的空间直角坐标系Dxyz 由已知得1DFb,故(1 0 0)A ,(1 01)A,(0 0 0)D,(0 0 1)D,(10)Pb,(11)Qb, ,(11 0)Eb, ,(10 0)Fb,( 11)G b, ,(01)H b,()证明:在所建立的坐标系中,可得(0 1 0)(0)PQPFbb, ,(10 1)PHbb,( 1 01)( 1 01)ADA D,因
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022年人教版高中数学必修全册教案 2022 年人教版 高中数学 必修 教案
限制150内