2022年芯片制作工艺流程文件 .pdf
《2022年芯片制作工艺流程文件 .pdf》由会员分享,可在线阅读,更多相关《2022年芯片制作工艺流程文件 .pdf(10页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、芯片制作工艺流程工艺流程1) 表面清洗晶圆表面附着一层大约2um的 Al2O3和甘油混合液保护之 , 在制作前必须进行化学刻蚀和表面清洗。2) 初次氧化有热氧化法生成 SiO2 缓冲层,用来减小后续中Si3N4 对晶圆的应力氧化技术干法氧化 Si( 固) + O2 SiO2( 固) 湿法氧化 Si( 固) +2H2O SiO2( 固) + 2H2 干法氧化通常用来形成, 栅极二氧化硅膜, 要求薄,界面能级和固定电荷密度低的薄膜。干法氧化成膜速度慢于湿法。 湿法氧化通常用来形成作为器件隔离用的比较厚的二氧化硅膜。当SiO2 膜较薄时,膜厚与时间成正比。SiO2 膜变厚时,膜厚与时间的平方根成正比
2、。因而,要形成较厚的 SiO2 膜,需要较长的氧化时间。SiO2 膜形成的速度取决于经扩散穿过SiO2膜到达硅表面的O2及 OH基等氧化剂的数量的多少。湿法氧化时,因在于OH基在 SiO2膜中的扩散系数比O2的大。氧化反应, Si 表面向深层移动,距离为SiO2膜厚的 0.44 倍。因此,不同厚度的 SiO2 膜,去除后的 Si 表面的深度也不同。 SiO2 膜为透明,通过光干涉来估计膜的厚度。这种干涉色的周期约为200nm ,如果预告知道是几次干涉,就能正确估计。对其他的透明薄膜,如知道其折射率,也可用公式计算出(d SiO2) / (d ox) = (n ox) / (n SiO2)。Si
3、O2 膜很薄时,看不到干涉色,但可利用 Si 的疏水性和 SiO2 的亲水性来判断SiO2膜是否存在。也可用干涉膜计或椭圆仪等测出。SiO2和 Si 界面能级密度和固定电荷密度可由MOS 二极管的电容特性求得。 (100)面的 Si 的界面能级密度最低,约为10E+10 - 10E+11/cm 2 .e V -1 数量级。(100) 面时,氧化膜中固定电荷较多,固定电荷密度的大小成为左右阈值的主要因素。3) CVD(Chemical Vapor deposition)法沉积一层 Si3N4(Hot CVD 或 LPCVD) 。1 常压 CVD (Normal Pressure CVD) NPC
4、VD 为最简单的 CVD 法,使用于各种领域中。其一般装置是由(1) 输送反名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 1 页,共 10 页 - - - - - - - - - 应气体至反应炉的载气体精密装置; (2) 使反应气体原料气化的反应气体气化室;(3) 反应炉;(4) 反应后的气体回收装置等所构成。其中中心部分为反应炉, 炉的形式可分为四个种类, 这些装置中重点为如何将反应气体均匀送入,故需在反应气体的流动与基板位置上用心改进。当为水平时, 则基板倾斜; 当为纵型时,
5、着反应气体由中心吹出, 且使基板夹具回转。 而汽缸型亦可同时收容多数基板且使夹具旋转。为扩散炉型时,在基板的上游加有混和气体使成乱流的装置。2 低压 CVD (Low Pressure CVD) 此方法是以常压 CVD 为基本,欲改善膜厚与相对阻抗值及生产所创出的方法。主要特征: (1) 由于反应室内压力减少至10-1000Pa而反应气体,载气体的平均自由行程及扩散常数变大, 因此, 基板上的膜厚及相对阻抗分布可大为改善。反应气体的消耗亦可减少;(2) 反应室成扩散炉型,温度控制最为简便,且装置亦被简化,结果可大幅度改善其可靠性与处理能力( 因低气压下,基板容易均匀加热) ,因基可大量装荷而改
6、善其生产性。3 热 CVD (Hot CVD)/(thermal CVD) 此方法生产性高,梯状敷层性佳 ( 不管多凹凸不平,深孔中的表面亦产生反应,及气体可到达表面而附着薄膜) 等,故用途极广。膜生成原理,例如由挥发性金属卤化物 (MX)及金属有机化合物 (MR)等在高温中气相化学反应(热分解,氢还原、氧化、替换反应等 )在基板上形成氮化物、氧化物、碳化物、硅化物、硼化物、高熔点金属、 金属、半导体等薄膜方法。 因只在高温下反应故用途被限制,但由于其可用领域中, 则可得致密高纯度物质膜, 且附着强度极强, 若用心控制, 则可得安定薄膜即可轻易制得触须(短纤维 ) 等,故其应用范围极广。 热
7、CVD法也可分成常压和低压。 低压 CVD 适用于同时进行多片基片的处理, 压力一般控制在 0.25-2.0Torr之间。作为 栅电极的多晶硅通常利用HCVD 法将 SiH4 或 Si2H。气体热分解(约 650 oC)淀积而成。采用选择氧化进行器件隔离时所使用的氮化硅薄膜也是用低压 CVD 法,利用氨和 SiH4 或 Si2H6 反应面生成的,作为层间绝缘的 SiO2 薄膜是用 SiH4 和 O2在 400 -4500 oC的温度下形成SiH4 + O2 -SiO2 + 2H2 或是用 Si(OC2H5)4 (TEOS: tetra ethoxy silanc )和 O2在 750 oC 左
8、右的高温下反应生成的, 后者即采用 TEOS 形成的 SiO2膜具有台阶侧面部被覆性能好的优点。前者,在淀积的同时导入PH3 气体,就形成磷硅玻璃( PSG : phosphor silicate glass )再导入 B2H6气体就形成 BPSG(borro phosphorsilicate glass) 膜。这两种薄膜材料, 高温下的流动性好, 广泛用来作为表面平坦性好的层间绝缘膜。4 电浆增强 CVD (Plasma Enhanced CVD) NPCVD 法及 LPCVD 法等皆是被加热或高温的表面上产生化学反应而形成薄膜。PECVD 是在常压 CVD 或 LPCVD 的反应空间中导入
9、电浆 (等离子体 ),而使存在名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 2 页,共 10 页 - - - - - - - - - 于空间中的气体被活化而可以在更低的温度下制成薄膜。激发活性物及由电浆中低速电子与气体撞击而产生。光 CVD (Photo CVD) PECVD 使薄膜低温化,且又产生如A-Si 般的半导体元件。但由于薄膜制作中需考虑:(1) 在除去高温 (HCVD) 及 PECVD 时掺入元件中的各种缺陷( 如 PECVD 中带电粒子撞击而造成的损伤 ) ;(2)
10、不易制作的元件 ( 不纯物剖面 ),不希望在后面受到工程高温处理被破坏,因此希望可于低温中被覆薄膜。PCVD 是解决这此问题的方法之一。 遇热分解时, 因加热使一般分子的并进运动与内部自由度被激发(激发了分解时不需要的自由度) ,相对的,在 PCVD 中,只直接激发分解必须的内部自由度,并提供活化物促使分解反应。 故可望在低温下制成几无损伤的薄膜且因光的聚焦及扫描可直接描绘细线或蚀刻。5 MOCVD (l Organic CVD) &分子磊晶成长 (Molecular Beam Epitaxy) CVD 技术另一重要的应用为MOCVD,此技术与 MBE(Molecular Beam Epita
11、xy) 同为: (1) 成长极薄的结晶; (2) 做多层构造; (3) 多元混晶的组成控制; (4)目标为化合物半导体的量产。此有装置有下列特征:(1) 只需有一处加热,装置构造简单, 量产装置容易设计; (2) 膜成长速度因气体流量而定,容易控制; (3)成长结晶特性可由阀的开头与流量控制而定;(4) 氧化铝等绝缘物上可有磊晶成长;(5) 磊晶成长可有选择, 不会被刻蚀。 相反地亦有:(1) 残留不纯物虽已改善,但其残留程度极高; (2) 更希望再进一步改良对结晶厚度的控制;(3) 所用反应气体中具有引火性、发水性,且毒性强的气体极多;(4) 原料价格昂贵等缺点。多层布线间的层间绝缘膜的沉积
12、, 以及最后一道工序的芯片保护膜的沉积必须在低温下 (450 C 以下) 下进行,以免损伤 铝布线。等离子 CVD 法就是为此而发明的一种方法。6 外延生长法 (LPE) 外延生长法 (epitaxial growth)能生长出和单晶衬底的原子排列同样的单晶薄膜。在双极型集成电路中, 为了将衬底和器件区域隔离(电绝缘 ) ,在 P型衬底上外延生长 N型单晶硅层。 在 MOS 集成电路中也广泛使用外延生长法,以便容易地控制器件的尺寸, 达到器件的精细化。 此时,用外延生长法外延一层杂质浓度低(约 10 15 cm-3) 的供形成的单晶层、衬底则为高浓度的基片,以降低电阻,达到基极电位稳定的目的。
13、LPE可以在平面或非平面衬底生长、能获得十分完善的结构。 LPE可以进行掺杂,形成n-和 p-型层,设备为通用外延生长设备,生长温度为 300 oC-900 oC,生长速率为 0.2um-2um/min,厚度 0.5um-100um ,外延层的外貌决定于结晶条件,并直接获得具有绒面结构表面外延层。4) 涂敷光刻胶光刻制造过程中,往往需采用20-30 道光刻工序,现在技术主要采有紫外线(包名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 3 页,共 10 页 - - - - - - -
14、- - 括远紫外线 ) 为光源的光刻技术。光刻工序包括翻版图形掩膜制造,硅基片表面光刻胶的涂敷、预烘、曝光、显影、后烘、腐蚀、以及光刻胶去除等工序。(1) 光刻胶的涂敷在涂敷光刻胶之前, 将洗净的基片表面涂上附着性增强剂或将基片放在惰性气体中进行热处理。 这样处理是为了增加光刻胶与基片间的粘附能力,防止显影时光刻胶图形的脱落以及防止湿法腐蚀时产生侧面腐蚀(side etching)。 光刻胶的涂敷是用转速和旋转时间可自由设定的甩胶机来进行的。首先、用真空吸引法将基片吸在甩胶机的吸盘上, 将具有一定粘度的光刻胶滴在基片的表面,然后以设定的转速和时间甩胶。 由于离心力的作用, 光刻胶在基片表面均匀
15、地展开,多余的光刻胶被甩掉, 获得一定厚度的光刻胶膜, 光刻胶的膜厚是由光刻胶的粘度和甩胶的转速来控制。 所谓光刻胶, 是对光、电子束或 X 线等敏感,具有在显影液中溶解性的性质,同时具有耐腐蚀性的材料。一般说来,正型胶的分辩率高,而负型胶具有高感光度以及和下层的粘接性能好等特点。 光刻工艺精细图形 (分辩率,清晰度 ) ,以及与其他层的图形有多高的位置吻合精度(套刻精度 )来决定,因此有良好的光刻胶,还要有好的曝光系统。 (2) 预烘 (pre bake) 因为涂敷好的光刻胶中含有溶剂, 所以要在 80C左右的烘箱中在惰性气体环境下预烘 15-30 分钟,去除光刻胶中的溶剂。(3) 曝光将高
16、压水银灯的 g 线(l=436 nm), i线(l=365nm) 通过掩模照射在光刻胶上,使光刻胶获得与掩模图形同样的感光图形。根据曝光时掩模的光刻胶的位置关系,可分为接触式曝光、 接近式曝光和投影曝光三种。而投影曝光又可分为等倍曝光和缩小曝光。缩小曝光的分辩率最高,适宜用作加工,而且对掩模无损伤,是较常用的技术。缩小曝光将掩模图形缩小为原图形的1/5-1/10 ,这种场合的掩模被称为掩模原版 (reticle)。使用透镜的曝光装置,其投影光学系统的清晰度 R和焦深 D 分别用下式表示:R=k1 /NA D=k2 /(NA) 2 曝光波长NA 透镜的数值孔径k1、k2 为与工艺相关的参数, k
17、1(0.6-0.8), k2(0.5) 由此可知:要提高清晰度 (R 变小) ,必须缩短波长,加大透镜数值孔径。随着曝光波长的缩短, 清晰度得到改善, 但是焦深却变短, 对光刻胶表面平坦度提出了更严格的要求, 这是一个很大的缺点。 通常采用的高压水银灯, 还有比高压水银灯 I-line波长短的远紫外线准分子激光器(excimer laser, KrF:248nm,ArF:193nm)为曝光光源。为了解决上述所提到的缺点,用比光的波长更短的X名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - -
18、第 4 页,共 10 页 - - - - - - - - - 线(l=1-10nm) 作为曝光光源, 技术上有很大的进展, 利用 X线和电子束进行光刻时,其焦深较深,对表面平坦度没有苛刻的要求。接近式曝光技术为光罩掩模与基板相互靠近保持较近的间隙(gap) ,以 UV光由 MASK 侧面照射,将图案投射在基板上对光阻进行曝光。一般而言,光罩尺寸较基板大, 所以图案将以 1:1 的大小转印到光阻上, 此方法精度较所常用的步进机(stepper,能输出一定频率和波长的光线) 或镜像投影 (Mirror Projection)来得差,但其优点为产量 (throughput)大,设备便宜。在光学系统中
19、, 大型的准直镜(collimate mirror)(球面或非球面 ) 对转刻精度影响最大, 以日前制作水准而言,倾斜角 (declination angle)约可以做到 + -0.3以内。若倾斜角过大,则基片边缘的图案将与光罩设计的位置有所差别,将影响到total pitch(图案实际长度与设计长度的误差容忍值) 的误差。而一般接近式曝光技术解析度与光罩及基板的间隙和光的波长有关。随着基片的增大, 光罩也随之增大, 由于光罩本身的重量会使得光罩中间部分向下弯曲。如果弯曲程度得到控制, 利用光线反射原理的检测 ( 类似光的薄膜干涉 ) 来推算光罩与基板的距离。光罩精密对位技术,此对位技术可分为
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022年芯片制作工艺流程文件 2022 芯片 制作 工艺流程 文件
限制150内