2022年半导体器件芯片焊接技巧及控 .pdf
《2022年半导体器件芯片焊接技巧及控 .pdf》由会员分享,可在线阅读,更多相关《2022年半导体器件芯片焊接技巧及控 .pdf(4页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、半导体器件芯片焊接技巧及控制1 引言随着现代科技的发展,半导体器件和组件在工程、商业上得到了广泛应用。它在雷达、遥控遥测、航空航天等的大量应用对其可靠性提出了越来越高的要求。而因芯片焊接 (粘贴)不良造成的失效也越来越引起了人们的重视,因为这种失效往往是致命的,不可逆的。芯片到封装体的焊接(粘贴)技巧很多,可概括为金属合金焊接法(或称为低熔点焊接法) 和树脂粘贴两大类1 。 它们连接芯片的机理大不一样,必须根据器件的种类和要求进行合理选择。要获得理想的连接质量,还需要有针对性地分析各种焊接(粘贴) 技巧机理和特点,分析影响其可靠性的诸多因素,并在工艺中不断地加以改进。本文对两大类半导体器件焊接
2、(粘贴)技巧的机理进行了简单阐述,对几种常用技巧的特点和适用性进行了比較,并讨论了在半导体器件中应用最为广泛的金-硅合金焊接失效模式及其解决办法。2 芯片焊接 (粘贴 )技巧及机理芯片的焊接是指半导体芯片与载体(封装壳体或基片)形成牢固的、传导性或绝缘性连接的技巧。焊接层除了为器件提供机械连接和电连接外,还须为器件提供良好的散热通道。其技巧可分为树脂粘接法和金属合金焊接法。树脂粘贴法是采用树脂粘合剂在芯片和封装体之间形成一层绝缘层或是在其中掺杂金属(如金或银) 形成电和热的良导体。粘合剂大多采用环氧树脂。环氧树脂是稳定的线性聚合物,在加入固化剂后,环氧基打开形成羟基并交链,从而由线性聚合物交链
3、成网状结构而固化成热固性塑料。其过程由液体或粘稠液 凝胶化 固体。固化的条件主要由固化剂种类的选择来决定。而其中掺杂的金属含量决定了其导电、导热性能的好坏。掺银环氧粘贴法是当前最流行的芯片粘贴技巧之一,它所需的固化温度低,这能够避免热应力,但有银迁移的缺点2 。 近年来应用于中小功率晶体管的金导电胶优于银导电胶3 。 非导电性填料包括氧化铝、氧化铍和氧化镁,能够用来改善热导率。树脂粘贴法因其操作过程中载体不须加热,设备简单,易于实现工艺自动化操作且经济实惠而得到广泛应用,尤其在集成电路和小功率器件中应用更为广泛。树脂粘贴的器件热阻和电阻都很高。树脂在高温下简单分解,有可能发生填料的析出,在粘贴
4、面上只留下一层树脂使该处电阻增大。因此它不适于要求在高温下工作或需低粘贴电阻的器件。另外,树脂粘贴法粘贴面的机械强度远不如共晶焊接强度大。金属合金焊接法主要指金硅、金锗、金锡等共晶焊接。这里主要以金硅共晶焊为例加以讨论。金的熔点为1063 ,硅的熔点为1414 ,但金硅合金的熔点远低于单质的金和硅。从二元系相图中能够看到,含有31% 的硅原子和 69% 的金原子的Au-Si 共熔体共晶点温度为370。 这个共晶点是选择合适的焊接温度和对焊接深度进行控制的主要根据。金硅共晶焊接法就是芯片在绝对的压力下(附以摩擦或超声),当温度高于共晶温度时,金硅合金融化成液态的Au-Si 共熔体;冷却后,当温度
5、低于共晶温度时,共熔体由液相变为以晶粒形式互相结合的机械混合物 金硅共熔晶体而全部凝固,从而形成了牢固的欧姆接触焊接面。共晶焊接法具有机械强度高、热阻小、 稳定性好、可靠性高和含较少的杂质等优点,因而在微波功率器件和组件的芯片装配中得到了广泛的应用并备受高可靠器件封装业的青睐,其焊接强度已达到245MPa4 。金属合金焊接还包括“ 软焊料 ” 焊接(如95Pb/5Sn ,92.5Pb/5In/2.5Ag),因为其机械强度相对较小,在半导体器件芯片焊接中不太常用。以下是几种焊接(粘贴)技巧的比較,如表1 所示。无论采用哪种焊接技巧,成功的标志都是芯片与封装体焊接面之间的界面牢固、平整和没有空洞。
6、因为Au-Si共晶焊接在半导体器件和微电子电路中应用最为广泛,因而结合工作实际这里主要针对此种焊接技巧的失效原因和解决措施进行讨论。3 失效模式分析3.1 欧姆接触不良名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 1 页,共 4 页 - - - - - - - - - 芯片与基片间良好的欧姆接触是保证功率器件正常工作的前提。欧姆接触不良会使器件热阻加大,散热不均匀,影响电流在器件中的分布,破坏器件的热稳定性,甚至使器件烧毁。半导体器件的散热有辐射、对流和传导三种方式,其中热传导是其
7、散热的主要方式。以硅微波功率晶体管为例,图 1 是硅微波功率管装配模型,图2 是其热等效电路。其中Tj 为管芯结温, TC 为管壳温度; R1、R2、R3、R4、R5 分别是芯片、 Au-Si 焊接层、 BeO、界面焊料层和钨铜底座的热阻。总热阻R=R1+R2 +R3+R4+R 5。芯片集电结产生的热量主要通过硅片、焊接层、BeO 传到 WCu 外壳。Au-Si 焊接层的虚焊和空洞是造成欧姆接触不良的主要原因,空洞会引起电流密集效应,在它附近有可能形成不可逆的,破坏性的热电击穿,即二次击穿5 。焊接层的欧姆接触不良给器件的可靠性带来极大隐患。3.2 热应力失效这是一种由机械应力导致的失效。因为
8、其失效的最终表现形式往往是焊接面裂纹或芯片剥裂,因而在这里把它归结为微焊接失效模式之一来加以讨论。微电子器件的焊接界面是由性能各异的部分材料组成,如 Si、 SiO 2、 BeO、 Al2O3、WCu 等。这些材料的线热膨胀系数各不一样,如常用作底座的WCu 其膨胀系数比Si 晶体几乎大4 倍。当它们结合在一起时,不同的材料界面间会存在压缩或拉伸应力。微波功率器件在工作期间往往要经受热循环,因为芯片和封装体的热膨胀系数不同,在热循环过程中焊接面间产生周期性的剪切应力,这些应力将可能聚集在空洞的位置上使焊料形成裂纹甚至使硅片龟裂,最终导致器件因热疲劳而失效。在芯片与管壳之间的焊层中,最大的热剪切
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022年半导体器件芯片焊接技巧及控 2022 半导体器件 芯片 焊接 技巧
限制150内