2022年小学奥数之方阵问题—例题习题及含答案,推荐文档 .pdf
《2022年小学奥数之方阵问题—例题习题及含答案,推荐文档 .pdf》由会员分享,可在线阅读,更多相关《2022年小学奥数之方阵问题—例题习题及含答案,推荐文档 .pdf(23页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、- 1 - 方阵问题知识导航学生排队,士兵列队,横着排叫做行,竖着排叫做列。如果行数与列数都相等,则正好排成一个正方形,这种图形就叫方队, 也叫做 方阵( 亦叫 乘方问题)。核心公式:一、实心方阵1方阵总人数=最外层每边人数的平方(方阵问题的核心)=每边数 每边数2方阵最外层每边人数=(方阵最外层总人数 4) 1 3方阵外一层每边人数比内一层每边人数多2 4去掉一行、一列的总人数去掉的每边人数 21 5、每层数 =(每边数 -1) 4 二、空心方阵1、外边人数 =总人数 4 层数 +层数2、总数 =最外层人数2 - 最内层人数2 =(最外层每边数-层数) 层数 4 =(最外层数 +最内层数)
2、层数 2 3、内层数 =外层数 -8 4、每层数 =(每边数 -1) 4 5、实心方阵的总人数是一个完全平方数,空心方阵的总人数是4 的倍数。例 1 四年级同学参加广播操比赛,要排列成每行8 人,共 8 行方阵。排列这个方阵共需要多少名同学?解题分析这是一道实心方阵问题,求这个方阵里有多少名同学,就是求实心方阵中布点的总数。排列成每行8 人点,共 8 行,就是有8 个 8 点。求方阵里有多少名同学,就是求8 个 8人是多少人?解: 8 8=64(人)答:排列这个方阵,共需要64 名同学。例 2 有一堆棋子,刚好可以排成每边6 只的正方形。问棋子的总数是多少?最外层有多少只棋子?解题分析依题意可
3、以知道:每边 6 只棋子的正方形,就是棋子每6 只 1 排,一共有 6 排的实心方阵。 根据方阵问题应用题的解题规律,求实心方阵总数的数量关系,总人数 =每边人数名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 1 页,共 23 页 - - - - - - - - - - 2 - 每边人数,从而可以求出棋子的总数是多少只。而最外层棋子数则等于每边棋子数减去1 乘以行数 4,即( 6-1 ) 4 只。解: (1)棋子的总数是多少?66=36(只)(2)最外层有多少只棋子?(6-1 )4=
4、20(只)答:棋子的总数是36 只,最外层有20 只棋子。例 3. 三年级一班参加运动会入场式, 排成一个方阵 , 最外层一周的人数为20 人, 问方阵最外层每边的人数是多少?这个方阵共有多少人? 分析 :根据四周人数与每边人数的关系可知: 每边人数 =四周人数 4+1,可以求出这个方阵最外层每边的人数, 那么这个方阵队列的总人数就可以求了。解:(1) 方阵最外层每边的人数 :20 4+1=5+1=6(人) (2) 整个方阵共有学生人数 :6 6=36(人) 答: 方阵最外层每边的人数是6 人, 这个方阵共有36 人。例 4:学校学生排成一个方阵,最外层的人数是60 人,问这个方阵共有学生多少
5、人? 解析: 方阵问题的核心是求最外层每边人数。根据四周人数和每边人数的关系可以知:每边人数 =四周人数 4+1,可以求出方阵最外层每边人数,那么整个方阵队列的总人数就可以求了。方阵最外层每边人数:60 4+1=16(人)整个方阵共有学生人数:16 16=256(人)。【 巩 固 1】某校五年级学生排成一个方阵,最外一层的人数为60人. 问方阵外层每边有多少人?这个方阵共有五年级学生多少人?解析: 根据四周人数和每边人数的关系可以知:每边人数=四周人数 4+1,可以求出方阵最外层每边人数,那么整个方阵队列的总人数就可以求了。解: 方阵最外层每边人数:60 41=16(人)整个方阵共有学生人数:
6、16 16=256(人)答:方阵最外层每边有16人,此方阵中共有256人。【 巩 固 2】 晶晶用围棋子摆成一个三层空心方阵,最外一层每边有围棋子14个. 晶晶摆这个方阵共用围棋子多少个?名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 2 页,共 23 页 - - - - - - - - - - 3 - 解析: 方阵每向里面一层,每边的个数就减少2个. 知道最外面一层每边放14个,就可以求第二层及第三层每边个数. 知道各层每边的个数,就可以求出各层总数。解法 1:最外边一层棋子个数:
7、(14-1) 4=52(个)第二层棋子个数:(14-2-1) 4=44(个)第三层棋子个数:(14-2 2-1) 4=36(个) . 摆这个方阵共用棋子:52+4436132(个)解法 2:还可以这样想:中空方阵总个数=(每边个数一层数)层数 4进行计算。(14-3) 3 4=132(个)答:摆这个方阵共需132个围棋子。【巩固 3】一个正方形的队列横竖各减少一排共27 人,求这个正方形队列原来有多少人?解析: 依据:去掉一行、一列的总人数去掉的每边人数 21 可知每边的人数是:142) 127((人)原人数是:1961414(人)【巩固 4】小红用棋子摆成一个正方形实心方阵用棋子100 枚,
8、最外边的一层共多少枚棋子?解析: 这要用到方阵的公式逆运算,100 必然是一个数的平方数因为1001010(人),并且是实心的方阵,所以最外层有10 人。例 5 一堆棋子排成一个实心方阵,共有8 行 8 列,如果去掉一行一列,要去掉多少只棋子?还剩下多少只棋子?解题分析排成方阵的棋子,无论排在任何地方,都既是其中一排的棋子,也是其中一行的棋子,所以,无论去掉哪一行和哪一列,总会有一只棋子被重复去掉1 次,因此,要求出去掉一行一列去掉多少只棋子,就是要求出比原来方阵中2 行的棋子数少1 只。另外,要求出剩下多少只棋子,就要先求出棋子的总数,然后减去去掉的棋子数,就是剩下的棋子数。解: (1)去掉
9、多少只棋子? 82-1=15 (只)(2)还剩多少只棋子?88-15=49 (只)答:要去掉15 只棋子,还剩下49 只棋子。例 6 育英小学四年级的同学排成一个实心方阵队列,还剩下5 人,如果横竖各增加一排,排成一个稍大的实心方阵,则缺少26 人。育英小学四年级有多少人?解题分析排成一个实心方阵队列,还剩下5 人,说明是多出5 人,如果横竖各增加一排后,缺少 26 人,说明横竖各增加一排所需要的人数是5 人与 26 人的和,那么(5+26)人相当原名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - -
10、 - - 第 3 页,共 23 页 - - - - - - - - - - 4 - 来方阵中两排的人数多1 人,从( 5+26)人中减去角上的1 人,再除以2,就可求出原来方阵中一排的人数。因此,可求出原来方阵中的人数,然后加上剩下的5 人,就可求出四年级的总人数是多少人。解: (1)原来方阵中每排有多少人?(5+26-1 ) 2=15(人)(2)四年级共有多少人?1515+5=230(人)答:育英小学四年级有230 人。例 7:参加中学生运动会团体操比赛的运动员排成了一个正方形队列。如果要使这个正方形队列减少一行和一列,则要减少33 人。问参加团体操表演的运动员有多少人?解析: 如下图表示的
11、是一个五行五列的正方形队列。从图中可以看出正方形的每行、每列人数相等;最外层每边人数是5,去一行、一列则一共要去9 人,因而我们可以得到如下公式:去掉一行、一列的总人数去掉的每边人数 21 解 :方阵问题的核心是求最外层每边人数。原题中去掉一行、一列的人数是33,则去掉的一行(或一列)人数172) 133(人方阵的总人数为最外层每边人数的平方,所以总人数为2891717(人)【巩固】参加军训的学生进行队列表演,他们排成了一个七行七列的正方形队列,如果去掉一行一列,请问:要去掉多少名学生?还剩下多少名学生?解析: 如上图表示的是一个4 行 4 列的实心正方形队列,从图中可以看出正方形队列的特点:
12、(1)正方形队列每行、每列的人数相等,因此总人数每行人数 每列人数。(2)去掉横竖各一排时,有且只有1 人是同时属于被减去的一行和一列的,如图中点A 所示。因此去掉的总人数原每行人数 21,或去掉的总人数减少后每行人数 21。本题中所求,即去掉的人数7 2113(人)或去掉的人数(71) 2113(人)还剩的人数(71) (71)36(人)或还剩的人数7 713491336(人)答:如果去掉一行一列,要去掉13 名学生,还剩下36 名学生。名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - -
13、第 4 页,共 23 页 - - - - - - - - - - 5 - 例 8 同学们排成一个三层的空心方阵。已知最内层每边有6 人,这个方阵共有多少人?解题分析要求出这个方阵有多少人,就要先示出这个方阵最外层每边多少。已知最内层每边有 6 人,又知道这个空心方阵有3 层,根据方阵问题应用题特点,可以求出这个方阵最外层每边有 6+(3-1 )2 人,即 10 人。又根据方阵问题应用题数量关系:空心阵总人数=(外边人数- 层数)层数4,即可求出这个方阵共有多少人。解: 6+ (3-1 )2-3 34=84(人)答:这个方阵共有84 人。例 9. 明明用围棋子摆成一个三层空心方阵, 如果最外层每
14、边有围棋子15 个, 明明摆这个方阵最里层一周共有多少棋子?摆这个三层空心方阵共用了多少个棋子? 分析 :(1) 方阵每向里面一层, 每边的个数就减少2 个, 知道最外面一层, 每边放 15 个, 可以求出最里层每边的个数, 就可以求出最里层一周放棋子的总数。(2) 根据最外层每边放棋子的个数减去这个空心方阵的层数, 再乘以层数 , 再乘以 4, 计算出这个空心方阵共用棋子多少个。解:(1) 最里层一周棋子的个数是:(15-2-2-1)4=40(个 ) (2) 这个空心方阵共用的棋子数是:(15-3)34=144(个 ) 答: 这个方阵最里层一周有40 个棋子 ; 摆这个空心方阵共用144 个
15、棋子。例 10:解放军战士排成一个每边12 人的中空方阵,共四层,求总人数?解法 1:这样想:把中空方阵的总人数,看作中实方阵总人数减去空心方阵人数。(1)中实方阵总人数:12 12=144(人)(2)第四层每边人数:12-2 (4-1)=6(人)(3)空心方阵人数:(6-2) (6-2)=16(人)(4)中空方阵人数:144-16=128 (人)答:总人数是128 人。小结: 中空方阵总人数=外边人数 外边人数 -(内边人数 -2) (内边人数 -2)解法 2:这样想:把中空方阵分成四个相等的长方形。(1)每个长方形的长=外边人数 -层数 12-4=8(人)(2)每个长方形的宽是层数:4 人
16、(3)总人数: 8 4 4=128(人)答:总人数是128 人。小结: 中空方阵总人数=(每边人数 -层数) 层数 4 名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 5 页,共 23 页 - - - - - - - - - - 6 - 【巩固 】学校开展联欢会,要在正方形操场四周插彩旗。四个角上都插一面,每边插7 面。一共要准备多少面旗子?解析: 依据求外层个数的公式:(边数-1) 4 244) 17((面)例11:一个街心花园如右图所示. 它由四个大小相等的等边三角形组成. 已知
17、从每个小三角形的顶点开始, 到下一个顶点均匀栽有9棵花.问大三角形边上栽有多少棵花?整个花园中共栽多少棵花?解 析 : 从已知条件中可以知道大三角形的边长是小三角形边长的2倍. 又知道每个小三角形的边上均匀栽 9株,则大三角形边上栽的棵数为:17129(棵)。又知道这个大三角形三个顶点上栽的一棵花是相邻的两条边公有的,所以大三角形三条边上共栽花:483)117((棵)。. 再看图中画斜线的小三角形三个顶点正好在大三角形的边上. 再计算大三角形栽花棵数时已经计算过一次,所以小三角形每条边上栽花棵数为:729(棵)解: 大三角形三条边上共栽花:483)1129((棵)中间画斜线小三角形三条边上栽花
18、:213)29((棵)整个花坛共栽花:692148(棵)答:大三角形边上共栽花48棵,整个花坛共栽花69棵。例 12. 玲玲家的花园中, 有一个如下图那样, 由四个大小相同的小等边三角形组成的一个大三角形花坛 , 玲玲在这个花坛上种了若干棵鸡冠花, 已知每个小三角形每边上种鸡冠花5棵, 问大三角形的一周有鸡冠花多少棵?玲玲一共种鸡冠花多少棵? 名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 6 页,共 23 页 - - - - - - - - - - 7 - 分析 :(1) 由图可知
19、大三角形的一条边是由两条小三角形的边组成的, 而在大三角形一条边的中间那棵花 , 是两条小三角形的边所共用的, 所以如果小三角形每边种花5 棵, 那么大三角形每边上种花的棵数就是52-1=9 棵了, 又由于大三角形三个顶点上的3 棵花 ,都是大三角形的两条边所共用的 , 所以大三角形一周种花的棵数等于大三角形三边上种花棵数的和减去三个顶点上重复计算的3 棵花 ,即:9 3 -3=24, 就是大三角形一周种花的棵数。(2) 三角形各条边上种鸡冠花棵数的总和, 等于里边小三角形一周上种花的棵数, 加上大三角形一周种花的棵数, 再减去重复计算的3棵花 ( 因为里边小三角形的三个顶点上的三棵花, 也分
20、别是外边大三角形每条边上的一棵花) 。解:(1) 大三角形一周上种花的棵数是:(5 2 - 1)3-3=24( 棵) (2) 小三角形一周种鸡冠花的棵数是:(5-1)3=12(棵 ) (3) 玲玲一共种鸡冠花的棵数是:24+12-3=33( 棵) 答: 大三角形一周种鸡冠花24 棵;玲玲一共种鸡冠花33 棵。例 13. 有杨树和柳树以隔株相间的种法, 种成 7行 7列的方阵 , 问这个方阵最外一层有杨树和柳树各多少棵 ?方阵中共有杨树, 柳树各多少棵 ? 分析 :根据已知条件柳树和杨树的种法有如下两种, 假设黑点表示杨树, 白点表示柳树观察图(1)(2)不管是柳树种在方阵最外层的角上还是杨树种
21、在方阵最外层的角上, 方阵中除最里边一层外其它层杨树和柳树都是相同的。因而杨树和柳树的棵数相等, 即最外层杨 , 柳树分别为 (7-1)42=12(棵 ) 。当柳树种在方阵最外层的角上时, 最内层的一棵是柳树; 当杨树种在方阵最外层的角上时,最内层的一棵是杨树, 即在方阵中 , 杨树和柳树总数相差1 棵。解:(1) 最外层杨柳树的棵数分别为:(7- 1)42=12(棵 ) (2) 当杨树种在最外层角上时, 杨树比柳树多1 棵: 杨树:(7 7+1)2=25(棵 ) 柳树:7 7-25=24( 棵) (3) 当柳树种在最外层角上时, 柳树比杨树多1 树柳树(77+1)2=25(棵 ) 杨树 77
22、-25=24( 棵) 答: 在图 (1)(2)两种方法中 , 方阵最外层都有杨树12 棵, 柳树 12 棵, 方阵中总共有杨树25 棵,柳树 12 棵, 方阵中总共有杨树25 棵, 柳树 24 棵, 或者有杨树24 棵, 柳树 25 棵。例14. 小红把平时节省下来的全部五分硬币先围成一个正三角形,正好用完,后来又改围成一个正方形,也正好用完。如果正方形的每条边比三角形的每条边少用5枚硬币,则小红所有五分硬币的总价值是多少?名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 7 页,共
23、23 页 - - - - - - - - - - 8 - 解一设正方形每边x枚硬币,三角形每边y枚硬币,一共有N枚硬币,根据公式可得方程组:N=4x 4 N=3y-3N=60 y-x=5 ,因为每枚硬币5分,所以总价值3元。注释这里围成的三角形和正方形都指的是空心的。解二根据数字特性法:硬币能围成正三角形硬币的个数是3的倍数 硬币的价值可以三等分根据选项选择 C。例15. 要在一块边长为48米的正方形地里种树苗,已知每横行相距3米,每竖列相距6米,四角各种一棵树,问一共可种多少棵树苗?()解析根据公式:棵数=总长间隔 +1。边长为 48米,每横行相距3米,共有 483+1=17行;边长为 48
24、米,每横行相距 6米,共有 486+1=9列;可得: 179=153(棵) ,一共可种树苗 153棵。【巩固】同学们做早操,排成一个正方形的方阵,从前、后、左、右数,小明都是第5个,这个方阵共有多少人?解析: 如图,实心圆表示小明的位置,可以知道,这个队列每行都是9人。解: 每行每列数:9125(人)共有 :8199(人)练 一 练1. 某校少先队员可以排成一个四层空心方阵如果最外层每边有20 个学生 , 问这个空心方阵最里边一周有多少个学生?这个四层空心方阵共有多少个学生? 2. 六一儿童节前夕, 在校园雕塑的周围, 用 204 盆鲜花围成了一个每边三层的方阵求最外面一层每边有鲜花多少盆?
25、3. 三年级 (1) 班的学生参加体操表演, 排成队形正好是由每7 个人为一边的6 个三角形组成的一个正六边形, 求正六边形一周共有多少名学生?三(1) 班参加体操表演的共有多少人? 4. 现有松树和柏树以隔株相间的种法, 种成 9 行 9 列的方阵 , 问这个方阵最外层有松树和柏名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 8 页,共 23 页 - - - - - - - - - - 9 - 树各多少棵 ?方阵中共有松树柏树各多少棵? 练 一 练 答 案(1)(20-23- 1)
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022年小学奥数之方阵问题例题习题及含答案 推荐文档 2022 小学 方阵 问题 例题 习题 答案 推荐 文档
限制150内