两个三角形相似相似三角形-知识点总结.doc
《两个三角形相似相似三角形-知识点总结.doc》由会员分享,可在线阅读,更多相关《两个三角形相似相似三角形-知识点总结.doc(14页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、两个三角形相似 相似三角形-知识点总结 第一节 相似形与相似三角形 基本概念: 1.相似形:对应角相等,对应边成比例的两个多边形,我们称它们互为相似形。 2.相似三角形:对应角相等,对应边成比例的两个三角形,叫做相似三角形。 1几个重要概念与性质(平行线分线段成比例定理) (1)平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.已知abc, A D a B E b C F c 可得 等.(2)推论:平行于三角形一边的直线截其它两边(或两边的延长线)所得的对应线段成比例.A D E B C 由DEBC可得:.此推论较原定理应用更加广泛,条件是平行.(3)推论的逆定理:如果一条直
2、线截三角形的两边(或两边的延长线)所得的对应线段成比例.那么这条直线平行于三角形的第三边.此定理给出了一种证明两直线平行方法,即:利用比例式证平行线.(4)定理:平行于三角形的一边,并且和其它两边相交的直线,所截的三角形的三边与原三角形三边对应成比例.(5)平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似。 比例线段:四条线段a,b,c,d中,如果a与b的比等于c与d的比,即,那么这四条线段a,b,c,d叫做成比例线段,简称比例线段。 2比例的有关性质 比例的基本性质:如果,那么ad=bc。如果ad=bc(a,b,c,d都不等于0),那么。 合比性质:如果,那么。 等比性质:
3、如果=(b+d+n0),那么 b是线段a、d的比例中项,则b2ad.典例剖析 例1: 在比例尺是1:38000的南京交通游览图上,玄武湖隧道长约7cm,则它的实际长度约为_Km. 若 = 则=_. 若 = 则a:b=_.3 相似三角形的判定 (1) 如果两个三角形的两角分别于另一个三角形的两角对应相等,那么这两个三角形相似。 (2) 两边对应成比例并且它们的夹角也相等的两个三角形相似。 (3) 三边对应成比例的两个三角形相似。 补充:相似三角形的识别方法 (1)定义法:三角对应相等,三边对应成比例的两个三角形相似。 (2)平行线法:平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成
4、的三角形与原三角形相似。 注意:适用此方法的基本图形,(简记为A型,_型) (3)三边对应成比例的两个三角形相似。 (4)两边对应成比例并且它们的夹角也相等的两个三角形相似。 (5)两角对应相等的两个三角形相似。 (6)一条直角边和斜边长对应成比例的两个直角三角形相似。 (7)被斜边上的高分成的两个直角三角形与原直角三角形相似。 【基础练习】 (1)如图1,当 时,ABC ADE (2)如图2,当 时, ABC AED。 (3)如图3,当 时, ABC ACD。 小结:以上三类归为基本图形:母子型或A型 (3)如图4,如图1,当ABED时,则 。 (4)如图5,当 时,则 。 小结:此类图开为
5、基本图开:兄弟型或_型 典例剖析 例1:判断 所有的等腰三角形都相似 ( ) 所有的直角三角形都相似 ( ) 所有的等边三角形都相似 ( ) 所有的等腰直角三角形都相似 ( ) 例2:如图,ABC中,AD是BAC的平分线,AD的垂直平分线交AD于E,交BC的延长线于F 求证: ABF CAF.例3:如图:在Rt ABC中, ABC=90,BDAC于D,若 AB=6 ;AD=2; 则AC= ;BD= ;BC= ; 例3:如图:在Rt ABC中, ABC=90,BDAC于D ,若E是BC中点,ED的延长线交BA的延长线于F, 求证:AB : AC=DF : BF 第二节 相似三角形的判定 (一)相
6、似三角形:定义 1、对应角相等,对应边成比例的两个三角形,叫做相似三角形 温馨提示: 当且仅当一个三角形的三个角与另一个(或几个)三角形的三个角对应相等,且三条对应边的比相等时,这两个(或几个)三角形叫做相似三角形,即定义中的两个条件,缺一不可; 相似三角形的特征:形状一样,但大小不一定相等; 对应中线之比、对应高之比、对应角平线之比等于相似比。 两个钝角三角形是否相似,首先要满足两个钝角相等的条件。 2、相似三角形对应边的比叫做相似比 温馨提示: 全等三角形一定是相似三角形,其相似比k=1所以全等三角形是相似三角形的特例其区别在于全等要求对应边相等,而相似要求对应边成比例 相似比具有顺序性例
7、如ABCABC的对应边的比,即相似比为k,则ABCABC的相似比,当且仅当它们全等时,才有k=k=1 相似比是一个重要概念,后继学习时出现的频率较高,其实质它是将一个图形放大或缩小的倍数,这一点借助相似三角形可观察得出 3、如果两个边数相同的多边形的对应角相等,对应边成比例,那么这两个多边形叫做相似多边形 4、相似三角形的预备定理:如果一条直线平行于三角形的一条边,且这条直线与原三角形的两条边(或其延长线)分别相交,那么所构成的三角形与原三角形相似 温馨提示: 定理的基本图形有三种情况,如图其符号语言: DEBC,ABCADE; 这个定理是用相似三角形定义推导出来的三角形相似的判定定理它不但本
8、身有着广泛的应用,同时也是证明下节相似三角形三个判定定理的基础,故把它称为“预备定理”; 有了预备定理后,在解题时不但要想到上一节“见平行,想比例”,还要想到“见平行,想相似” (二)相似三角形的判定 1、相似三角形的判定: 判定定理(1):两角对应相等,两三角形相似 判定定理(2):两边对应成比例且夹角相等,两三角形相似 判定定理(3):三边对应成比例,两三角形相似 温馨提示: 有平行线时,用上节学习的预备定理; 已有一对对应角相等(包括隐含的公共角或对顶角)时,可考虑利用判定定理1或判定定理2; 已有两边对应成比例时,可考虑利用判定定理2或判定定理3但是,在选择利用判定定理2时,一对对应角
9、相等必须是成比例两边的夹角对应相等 例1.如图三角形ABC中,点E为BC的中点,过点E作一条直线交AB于D 点,与AC的延长线将于F点,且FD=3ED,求证:AF=3CF 2、直角三角形相似的判定: 斜边和一条直角边对应成比例,两直角三角形相似 温馨提示: 由于直角三角形有一个角为直角,因此,在判定两个直角三角形相似时,只需再找一对对应角相等,用判定定理1,或两条直角边对应成比例,用判定定理2,一般不用判定定理3判定两个直角三角形相似; 如图是一个十分重要的相似三角形的基本图形,图中的三角形,可称为“母子相似三角形”,其应用较为广泛 如图,可简单记为:在RtABC中,CDAB,则ABCCBDA
10、CD 直角三角形的身射影定理:AC2=AD_AB CD2=AD_BD BC2=BD_AB 总结:寻找相似三角形对应元素的方法与技巧 正确寻找相似三角形的对应元素是分析与解决相似三角形问题的一项基本功通常有以下几种方法: (1)相似三角形有公共角或对顶角时,公共角或对顶角是最明显的对应角;相似三角形中最大的角(或最小的角)一定是对应角;相似三角形中,一对相等的角是对应角,对应角所对的边是对应边,对应角的夹边是对应边; (2)相似三角形中,一对最长的边(或最短的边)一定是对应边;对应边所对的角是对应角;对应边所夹的角是对应角 2、常见的相似三角形的基本图形: 学习三角形相似的判定,要与三角形全等的
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 两个 三角形 相似 知识点 总结
限制150内