《2022年强化训练北师大版七年级数学下册第五章生活中的轴对称专项攻克练习题.docx》由会员分享,可在线阅读,更多相关《2022年强化训练北师大版七年级数学下册第五章生活中的轴对称专项攻克练习题.docx(21页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、七年级数学下册第五章生活中的轴对称专项攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,点D是FAB内的定点且AD=2,若点C、E分别是射线AF、AB上异于点A的动点,且CDE周长的最小值是2时,
2、FAB的度数是()A30B45C60D902、下列四个图形分别是节能、节水、绿色食品和低碳标志,其中轴对称图形是( )ABCD3、下列图案属于轴对称图形的是( )ABCD4、如图点D,E分别在ABC的边BC,AB上,连接AD、DE,将ABC沿直线DE折叠后,点B与点A重合,已知AC6cm,ADC的周长为14cm,则线段BC的长为( )A6cmB8cmC12cmD20cm5、下列图案中,不是轴对称图形的为( )ABCD6、下列四个图标中,是轴对称图形的是( )ABCD7、如图,正方形网格中, A,B两点均在直线a上方,要在直线a上求一点P,使PAPB的值最小,则点P应选在( )AC点BD点CE点
3、DF点8、下列交通标志图案是轴对称图形的是( )ABCD9、下列图形中,是轴对称图形的是( )ABCD10、下列图形不是轴对称图形的是( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,将沿、翻折,顶点均落在点O处,且与重合于线段,若,则的度数_ 2、如图,方格纸中的每个小方格的边长为1,ABC是格点三角形(即顶点恰好是小方格的顶点)若格点ACP与ABC全等(不与ABC重合),则所有满足条件的点P有_个3、如图,从标有数字1,2,3,4的四个小正方形中拿走一个,成为一个轴对称图形,则应该拿走的小正方形的标号是_4、内部有一点P,点P关于的对称点为M,点P
4、关于的对称点为N,若,则的周长为_5、在一条可以折叠的数轴上,A,B表示的数分别是16,9,如图,以点C为折点,将此数轴向右对折,若点A在点B的右边,且AB1,则C点表示的数是_三、解答题(5小题,每小题10分,共计50分)1、如图,将ABC三个角分别沿DE、HG、EF翻折,三个顶点均落在点O处求1+2的度数2、如图,方格纸中每个小方格都是边长为1个单位的正方形,已知的三个顶点在格点上(1)画出,使它与关于直线a对称;(2)求出的面积;(3)在直线a上画出点P,使最小3、如图,正方形网格中,每个小正方形的顶点称为格点,每个小正方形的边长均为1,点A,B都在格点上,按下列要求作图,使得所画图形的
5、顶点均在格点上(1)在图1中画一个以线段为边的轴对称,使其面积为2;(2)在图2中画一个以线段为边的轴对称四边形,使其面积为64、如图所示的每幅图形中的两个图案是轴对称的吗?如果是,指出它们的对称轴,并找出一对对称点5、如图,已知四边形ABCD与四边形EFGH关于直线MN对称,D130,A+B155,AD4cm,EF5cm(1)求出AB,EH的长度以及G的度数;(2)连接AE,DH,AE与DH平行吗?为什么?-参考答案-一、单选题1、A【分析】作D点分别关于AF、AB的对称点G、H,连接GH分别交AF、AB于C、E,利用轴对称的性质得AG=AD=AH=2,利用两点之间线段最短判断此时CDE周长
6、最小为DC+DE+CE=GH=2,可得AGH是等边三角形,进而可得FAB的度数【详解】解:如图,作D点分别关于AF、AB的对称点G、H,连接GH分别交AF、AB于C、E,连接DC,DE,此时CDE周长最小为DC+DE+CE=GH=2,根据轴对称的性质,得AG=AD=AH=2,DAF=GAF,DAB=HAB,AG=AH=GH=2,AGH是等边三角形,GAH=60,FAB=GAH=30,故选:A【点睛】本题考查了轴对称-最短路线问题:熟练掌握轴对称的性质,会利用两点之间线段最短解决路径最短问题2、C【分析】由题意依据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这
7、条直线叫做对称轴,这时也可以说这个图形关于这条直线(成轴)对称进行分析判断即可【详解】解:A.不是轴对称图形,故本选项错误;B.不是轴对称图形,故本选项错误;C.是轴对称图形,故本选项正确;D.不是轴对称图形,故本选项错误故选:C【点睛】本题考查轴对称图形的概念,注意掌握轴对称图形是针对一个图形而言的,是一种具有特殊性质图形,被一条直线分割成的两部分沿着对称轴折叠时互相重合3、C【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析【详解】解:A、不是轴对称图形,故此选项不符合题意;B、不是轴对称图形,故此选项不符合题意;C、是轴
8、对称图形,故此选项符合题意;D、不是轴对称图形,故此选项不符合题意;故选:C【点睛】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合4、B【分析】由折叠的性质得出BDAD,由题意得出AD+DCBD+DCBC即可得出答案【详解】解:ABC沿直线DE折叠后,点B与点A重合,BDAD,AC6cm,ADC的周长为14cm,AD+DC1468cm,BD+DCBC8cm,故选:B【点睛】此题主要考查了翻折变换的性质,根据题意得出ADBD是解题关键5、D【分析】轴对称图形的定义:如果一个平面图形沿着一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形
9、,据此逐项判断即可【详解】解:A中图形是轴对称图形,不符合题意;B中图形是轴对称图形,不符合题意;C中图形是轴对称图形,不符合题意;D中图形不是轴对称图形,符合题意,故选:D【点睛】本题考查轴对称的定义,理解定义,找准对称轴是解答的关键6、C【分析】根据轴对称图形的定义:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,进行求解即可【详解】解:A、不是轴对称图形,故不符合题意;B、不是轴对称图形,故不符合题意;C、是轴对称图形,故符合题意;D、不是轴对称图形,故不符合题意;故选C【点睛】本题主要考查了轴对称图形的识别,解题的关键在于能够熟知轴对称图形的定义7
10、、C【分析】取A点关于直线a的对称点G,连接BG与直线a交于点E,点E即为所求【详解】解:如图所示,取A点关于直线a的对称点G,连接BG与直线a交于点E,点E即为所求,故选C【点睛】本题主要考查了轴对称最短路径问题,解题的关键在于能够熟练掌握轴对称最短路径的相关知识8、B【详解】解:、不是轴对称图形,故本选项错误,不符合题意;、是轴对称图形,故本选项正确,符合题意;、不是轴对称图形,故本选项错误,不符合题意;、不是轴对称图形,故本选项错误,不符合题意故选:B【点睛】本题考查了轴对称图形,解题的关键是掌握轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合9、A【分析】
11、根据轴对称图形的定义:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形,进行判断即可【详解】解:A、是轴对称图形,符合题意;B、不是轴对称图形,不符合题意;C、不是轴对称图形,不符合题意;D、不是轴对称图形,不符合题意;故选:A【点睛】本题考查了轴对称图形的识别,熟记定义是解本题的关键10、B【分析】根据轴对称图形的定义:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,进行逐一判断即可【详解】解:A、是轴对称图形,不符合题意;B、不是轴对称图形,符合题意;C、是轴对称图形,不符合题意;D、是轴对称图形,不符合题意;故选B【点睛】本题主要考查
12、了轴对称图形的识别,熟知轴对称图形的定义是解题的关键二、填空题1、47【分析】由翻折的性质可得ADOE,BEOF,可得DOFAB,由三角形内角和定理可得AB180C,即可求C的度数【详解】解:将ABC沿DE,EF翻折,顶点A,B均落在点O处,ADOE,BEOF,DOFABABC180AB180CDOFCCDOCOF180CC86180CC47故答案为:47【点睛】本题考查了翻折的性质,三角形内角和定理,熟练运用三角形内角和定理是本题的关键2、3【分析】如图,把沿直线对折可得: 把沿直线对折,从而可得答案.【详解】解:如图,把沿直线对折可得: 把沿直线对折可得: 所以符合条件的点有3个,故答案为
13、:3【点睛】本题考查的轴对称的性质,全等三角形的概念,掌握“利用轴对称的性质确定全等三角形”是解本题的关键.3、2【分析】根据轴对称图形的定义求解即可轴对称图形:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形【详解】解:由轴对称图形的定义可得,应该拿走的小正方形的标号是2故答案为:2【点睛】此题考查了轴对称图形的定义,解题的关键是熟练掌握轴对称图形的定义轴对称图形:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形4、15【分析】根据轴对称的性质可证MON=2AOB=60;再利用OM=ON=OP,即可求出的周长【详解】解:根据题意可画出下图,OA垂直平分PM,O
14、B垂直平分PNMOA=AOP,NOB=BOP;OM=OP=ON=5cmMON=2AOB=60为等边三角形。MON的周长=35=15故答案为:15【点睛】此题考查了轴对称的性质及相关图形的周长计算,根据轴对称的性质得出MON=2AOB=60是解题关键5、-3【分析】根据A与B表示的数求出AB的长,再由折叠后AB的长,求出BC的长,即可确定出C表示的数【详解】解:A,B表示的数为16,9,AB9(16)25,折叠后AB1,BC12,点C在B的左侧,C点表示的数为9-12=3故答案为:-3【点睛】此题考查了数轴,折叠的性质,熟练掌握各自的性质是解本题的关键三、解答题1、180【分析】根据翻折变换前后
15、对应角不变,故BHOG,ADOE,CEOF,1+2+HOG+EOF+DOE360,进而求出1+2的度数【详解】解:将ABC三个角分别沿DE、HG、EF翻折,三个顶点均落在点O处,BHOG,ADOE,CEOF,1+2+HOG+EOF+DOE360,HOG+EOF+DOEA+B+C180,1+2360180180【点睛】此题主要考查了翻折变换的性质和三角形的内角和定理,根据已知得出HOG+EOF+DOEA+B+C180是解题关键2、(1)见解析;(2);(3)见解析【分析】(1)分别作点A、B、C关于直线a的对称点A1、B1、C1;顺次连接A1、B1、C1所得的三角形即为所求(2)用ABC所在的矩
16、形的面积减去三个小三角形的面积即可求解(3)依据轴对称的性质,连接C1A(或A1C)与直线a交于点P即可【详解】(1)如图,A1B1C1即为所求(2)=22-122-11=(3)如图,连接C1A(或A1C)与直线a交于点P,则点P即为所求【点睛】考查了根据轴对称变换作图,解答本题的关键是根据网格结构作出对应点的位置,然后顺次连接3、(1)作图见详解;(2)作图见详解【分析】(1)根据轴对称图形的性质及面积作图即可;(2)根据题意,作出相应轴对称图形,验证面积即可得【详解】解:(1)根据题意:为轴对称图形,面积为2,由图可得:,即为所求,(答案不唯一);(2)四边形ABDE为轴对称图形,面积为:
17、,四边形ABDE即为所求(答案不唯一)【点睛】题目主要考查轴对称图形的作法,理解题意,熟练运用轴对称的性质是解题关键4、第(1)(3)是轴对称图形,对称轴和对称点见解析【分析】根据轴对称图形的定义确定是轴对称图形,连接两对对应点,然后作经过两对对应点连线中点的直线即可【详解】解:第(1)(3)是轴对称图形,(2)不是轴对称图形,点A、B是一对对称点,直线l是对称轴,如图(1)所示;点C、D是一对对称点,直线m是对称轴,如图(3)所示【点睛】本题考查了轴对称图形,以及轴对称图形的性质,主要考查了对称轴的确定方法,是基础题,需熟记注意:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形5、(1);(2),理由见解析【分析】(1)先根据四边形的内角和为360和已知条件求得的度数,进而根据轴对称的性质求得AB,EH的长度以及G的度数;(2)根据对称的性质可知,对称轴垂直平分对应的两点连成的线段,则,进而根据垂直于同一直线的两直线平行即可进行判断【详解】解:(1)四边形ABCD中,D130,A+B155,四边形ABCD与四边形EFGH关于直线MN对称,AD4cm,EF5cm,(2)连接AE,DH,则已知四边形ABCD与四边形EFGH关于直线MN对称,的对称点分别为,则【点睛】本题考查了轴对称的性质,四边形内角和,掌握轴对称的性质是解题的关键
限制150内