2022年强化训练北师大版九年级数学下册第三章-圆综合测试试题(含详细解析).docx
《2022年强化训练北师大版九年级数学下册第三章-圆综合测试试题(含详细解析).docx》由会员分享,可在线阅读,更多相关《2022年强化训练北师大版九年级数学下册第三章-圆综合测试试题(含详细解析).docx(34页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、北师大版九年级数学下册第三章 圆综合测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,正六边形ABCDEF的边长为6,以顶点A为圆心,AB的长为半径画圆,则图中阴影部分图形的周长为()A2B4C2
2、+12D4+122、如图,AB是的直径,的弦DC的延长线与AB的延长线相交于点P,于点E,则阴影部分的面积为( )ABCD3、若正六边形的边长为6,则其外接圆半径与内切圆半径的大小分别为()A6,3B6,3C3,6D6,34、在ABC中,点O为AB中点以点C为圆心,CO长为半径作C,则C 与AB的位置关系是( )A相交B相切C相离D不确定5、如图,在中,将绕点按逆时针方向旋转后得到,则图中阴影部分面积为( )ABCD6、如图,正方形ABCD的边长为8,若经过C,D两点的O与直线AB相切,则O的半径为( )A4.8B5C4D47、如图,AB 为O 的直径,弦 CDAB,垂足为点 E,若 O的半径
3、为5,CD=8,则AE的长为( )A3B2C1D8、如图,一个宽为2厘米的刻度尺(刻度单位:厘米)放在圆形玻璃杯的杯口上,刻度尺的一边与杯口外沿相切,另一边与杯口外沿两个交点处的读数恰好是2和8,那么玻璃杯的杯口外沿半径为()A5厘米B4厘米C厘米D厘米9、已知O的半径等于5,圆心O到直线l的距离为6,那么直线l与O的公共点的个数是( )A0B1C2D无法确定10、如图,面积为18的正方形ABCD内接于O,则O的半径为( )ABC3D第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知圆锥的底面半径为7cm,它的侧面积是35cm,则这个圆锥的母线长为_2、如图,矩形的对
4、角线、相交于点,分别以点、为圆心,长为半径画弧,分别交、于点、若,则图中阴影部分的面积为_(结果保留)3、如图,正五边形ABCDE内接于O,作OFBC交O于点F,连接FA,则OFA_4、如图,在边长为2的正方形ABCD 中,E,F分别是边DC,CB上的动点,且始终满足DECF,AE,DF交于点 P,则APD的度数为_ ;连接CP,线段CP长的最小值为_5、如图,将RtABC的斜边AB与量角器的直径恰好重合,B点与零刻度线的一端重合,ABC38,射线CD绕点C转动,与量角器外沿交于点D,若射线CD将ABC分割出以BC为边的等腰三角形,则点D在量角器上对应的度数是 _三、解答题(5小题,每小题10
5、分,共计50分)1、如图,在中,CD平分P为边BC上一动点,将沿着直线DP翻折到,点E恰好落在的外接圆上(1)求证:D是AB的中点(2)当,时,求DC的长(3)设线段DB与交于点Q,连结QC,当QC垂直于的一边时,求满足条件的所有的度数2、如图,AC是O的弦,过点O作OPOC交AC于点P,在OP的延长线上取点B,使得BABP(1)求证:AB是O的切线;(2)若O的半径为4,PC,求线段AB的长3、如图,AB是O的直径,弦CDAB于点E,AM是ACD的外角DAF的平分线(1)求证:AM是O的切线;(2)连接CO并延长交AM于点N,若O的半径为2,ANC = 30,求CD的长4、如图,四边形ABC
6、D内接O,CB(1)如图1,求证:ABCD;(2)如图2,连接BO并延长分别交O和CD于点F、E,若CDEB,CDEB,求tanCBF;(3)如图3,在(2)的条件下,在BF上取点G,连接CG并延长交O于点I,交AB于H,EFBG13,EG2,求GH的长5、如图,在中,点在边上,过三点的交于点,作直径,连结并延长交于点,连结,此时(1)求证:;(2)当为的中点,且时,求的直径长-参考答案-一、单选题1、D【分析】根据正多边形的外角求得内角的度数,进而根据弧长公式求得,即可求得阴影部分的周长【详解】解:正六边形ABCDEF的边长为6,阴影部分图形的周长为故选D【点睛】本题考查了求弧长公式,求正多
7、边形的内角,牢记弧长公式和正多边形的外角与内角的关系是解题的关键2、B【分析】由垂径定理可知,AE=CE,则阴影部分的面积等于扇形AOD的面积,求出,然后利用扇形面积公式,即可求出答案【详解】解:根据题意,如图:AB是的直径,OD是半径,AE=CE,阴影CED的面积等于AED的面积,;故选:B【点睛】本题考查了求扇形的面积,垂径定理,解题的关键是掌握所学的知识,正确利用扇形的面积公式进行计算3、B【分析】如图1,O是正六边形的外接圆,连接OA,OB,求出AOB=60,即可证明OAB是等边三角形,得到OA=AB=6;如图2,O1是正六边形的内切圆,连接O1A,O1B,过点O1作O1MAB于M,先
8、求出AO1B60,然后根据等边三角形的性质和勾股定理求解即可【详解】解:(1)如图1,O是正六边形的外接圆,连接OA,OB,六边形ABCDEF是正六边形,AOB=3606=60,OA=OB,OAB是等边三角形,OA=AB=6;(2)如图2,O1是正六边形的内切圆,连接O1A,O1B,过点O1作O1MAB于M,六边形ABCDEF是正六边形,AO1B60,O1A= O1B,O1AB是等边三角形,O1A= AB=6,O1MAB,O1MA90,AMBM,AB6,AMBM,O1M故选B【点睛】本题主要考查了正多边形与圆,等边三角形的性质与判定,勾股定理,熟知正多边形与圆的知识是解题的关键4、B【分析】根
9、据等腰三角形的性质,三线合一即可得,根据三角形切线的判定即可判断是的切线,进而可得C 与AB的位置关系【详解】解:连接,,点O为AB中点CO为C的半径,是的切线,C 与AB的位置关系是相切故选B【点睛】本题考查了三线合一,切线的判定,直线与圆的位置关系,掌握切线判定定理是解题的关键5、B【分析】阴影部分的面积=扇形扇形,根据旋转性质以及直角三角形的性质,分别求出对应扇形的面积以及的面积,最后即可求出阴影部分的面积【详解】解:由图可知:阴影部分的面积=扇形扇形,由旋转性质可知:,在中,有勾股定理可知:,阴影部分的面积=扇形扇形 故选:B【点睛】本题主要是考查了旋转性质以及扇形面积公式,熟练利用旋
10、转性质,得到对应扇形的半径和圆心角度数,利用扇形公式求解面积,这是解决本题的关键6、B【分析】连接EO,延长EO交CD于F,连接DO,设半径为x构建方程即可解决问题【详解】解:设O与AB相切于点E连接EO,延长EO交CD于F,连接DO,再设O的半径为xAB切O于E,EFAB,ABCD,EFCD,OFD=90,在RtDOF中,OFD=90,OF2+DF2=OD2,(8-x)2+42= x2,x=5,O的半径为5故选:B【点睛】本题考查了切线的性质、正方形的性质、垂径定理、勾股定理等知识,解题的关键是灵活运用这些知识解决问题,学会添加常用辅助线,构造直角三角形解决问题7、B【分析】连接OC,由垂径
11、定理,得到CE=4,再由勾股定理求出OE的长度,即可求出AE的长度【详解】解:连接OC,如图AB 为O 的直径,CDAB,垂足为点 E,CD=8,;故选:B【点睛】本题考查了垂径定理,勾股定理,解题的关键是掌握所学的知识,正确的求出8、D【分析】根据题意先求出弦AC的长,再过点O作OBAC于点B,由垂径定理可得出AB的长,设杯口的半径为r,则OB=r-2,OA=r,在RtAOB中根据勾股定理求出r的值即可【详解】解:杯口外沿两个交点处的读数恰好是2和8,AC=8-2=6厘米,过点O作OBAC于点B,则AB=AC=6=3厘米,设杯口的半径为r,则OB=r-2,OA=r,在RtAOB中,OA2=O
12、B2+AB2,即r2=(r-2)2+32,解得r=厘米故选:D【点睛】本题考查的是垂径定理的应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键9、A【分析】圆的半径为 圆心到直线的距离为 当时,圆与直线相离,直线与圆没有交点,当时,圆与直线相切,直线与圆有一个交点,时,圆与直线相交,直线与圆有两个交点,根据原理可得答案【详解】解:O的半径等于为8,圆心O到直线l的距离为为6,直线l与相离,直线l与O的公共点的个数为0,故选A【点睛】本题考查的是圆与直线的位置关系,圆与直线的位置关系有相离,相交,相切,熟悉三种位置关系对应的公共点的个数是解本题的关键10、C【分析】连接OA、OB,则为等
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 强化 训练 北师大 九年级 数学 下册 第三 综合测试 试题 详细 解析
限制150内