名师推荐导数公式大全ppt课件.ppt





《名师推荐导数公式大全ppt课件.ppt》由会员分享,可在线阅读,更多相关《名师推荐导数公式大全ppt课件.ppt(29页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、导数的基本公式与运算法则导数的基本公式与运算法则基本初等函数的导数公式基本初等函数的导数公式(x ) = x - -1 .(ax) = ax lna .(ex) = ex.0 (cc为任意常数).ln1)(logaxxa .1)(lnxx (sin x) = cos x.(cos x) = - - sin x.(tan x) = = sec2x .(cot x) = = - - csc2x .(sec x) = = sec x tan x .(csc x) = = - - csc x cot x .,11)(arcsin2xx- - 另外还有反三角函数的导数公式:另外还有反三角函数的导数公式:
2、,11)(arccos2xx- - - ,11)(arctan2xx .11)cotarc(2xx - - 定理定理2.2. 1设函数设函数 u(x)、v( (x) ) 在在 x 处可导处可导,)0)()()( xuxuxv在在 x 处也可导,处也可导,(u(x) v(x) = u (x) v (x);(u(x)v(x) = u(x)v (x) + + u (x)v(x);.)()()()()()()(2xuxvxuxvxuxuxv - - 导数的四则运算导数的四则运算且且则它们的和则它们的和、差差、积与商积与商推论推论 1(cu(x) = cu (x) (c 为常数为常数).推论推论 2.)
3、()()(12xuxuxu - - ()uvwu vwuv wuvw乘法法则的推广:乘法法则的推广:补充例题:补充例题: 求下列函数的导数:求下列函数的导数:解解根据推论根据推论 1 可得可得 (3x4) = 3(x4) ,(5cos x) = 5(cos x) ,(cos x) = - - sin x,(ex) = ex, (1) = 0,故故f (x) = (3x4 - - ex + 5cos x - - 1) = (3x4) - -( (ex ) ) + (5cos x) - - (1) = 12x3 - - ex - - 5sin x .f (0) = (12x3 - - ex - -
4、 5sin x)|x=0 = - - 1又又(x4) = 4x3,例例 1设设 f (x) = 3x4 ex + 5cos x - - 1,求求 f (x) 及及 f (0).例例 2设设 y = xlnx , 求求 y .解解根据乘法公式,有根据乘法公式,有y = (xlnx) = x (lnx) (x) lnxxxxln11 .ln1x 解解根据除法公式,有根据除法公式,有22222)1()1()1()1)(1(11 - - - - - - - - xxxxxxxy例例 3设设,112 - - xxy求求 y .2222)1()1()1()()1()(1( - - - - - - xxxx
5、x.)1(12)1()1(2)1(222222 - - - - - xxxxxxx教材教材P32 P32 例例2 2 求下列函数的导数:求下列函数的导数:3(1)cosyxx-2(2)xyx e2(3)1xyx-32(4)23 sinyxxxe解:解:332(1)(cos )() (cos )3sinyxxxxxx-2222(2)()()()2(2)xxxxxxyx exex exex exxe22222(1)(1)(3)()1(1)xxxxxyxx-2221( 2 )(1)xxxx-222)1 (1xx- 32(4)(2) (3 sin ) ()yxxxe0)sin( 3)(23-xxx)c
6、os(sin362xxxx- 高阶导数高阶导数如果可以对函数如果可以对函数 f(x) 的导函数的导函数 f (x) 再求导,再求导,所得到的一个新函数,所得到的一个新函数, 称为函数称为函数 y = f(x) 的二阶导数,的二阶导数,.dd22xy记作记作 f (x) 或或 y 或或如对二阶导数再求导,则如对二阶导数再求导,则称三阶导数,称三阶导数,.dd33xy记作记作 f (x) 或或 四阶或四阶以上导四阶或四阶以上导数记为数记为 y(4),y(5), ,y(n),dd44xy,ddnnxy或或 , 而把而把 f (x) 称为称为 f (x) 的一阶导数的一阶导数.例例3 3 求下列函数的
7、二阶导数求下列函数的二阶导数(1)cosyxx(2)arctanyx(1)cos( sin )cossinyxxxxxx-xxxxxxxycossin2)cos(sinsin-21(2)1yx222)1 ()1 (xxy-22)1 (2xx-解:解:二阶以上的导数可利用后面的数学软件二阶以上的导数可利用后面的数学软件来计算来计算 2.2.4 复合函数的求导法则2.2 ( )( )( ( )( ) ( ) dydy dudxdu dxdyfuu xduu xxyf uuyf u xxx定理若函数在点 可导,函数 在点 处可导,则复合函数在点 可导,且或记作:推论推论设设 y = f (u) ,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 名师 推荐 导数 公式 大全 ppt 课件

限制150内