2021-2022学年度强化训练北师大版八年级数学下册第一章三角形的证明单元测试试题(含详细解析).docx
《2021-2022学年度强化训练北师大版八年级数学下册第一章三角形的证明单元测试试题(含详细解析).docx》由会员分享,可在线阅读,更多相关《2021-2022学年度强化训练北师大版八年级数学下册第一章三角形的证明单元测试试题(含详细解析).docx(31页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、北师大版八年级数学下册第一章三角形的证明单元测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在ABC中,ACB=90,CAB=30,AC=63,D为AB上一动点(不与点A重合),AED为等边三角
2、形,过D点作DE的垂线,F为垂线上任意一点,G为EF的中点,则线段BG长的最小值是( )A23B6C33D92、下列各组数据中,能构成直角三角形的三边的长的一组是()A1,2,3B4,5,6C5,12,13D13,14,153、为了测量学校的景观池的长AB,在BA的延长线上取一点C,使得米,在点C正上方找一点D(即),测得,则景观池的长AB为( )A5米B6米C8米D10米4、等腰三角形的顶角是,则这个三角形的一个底角的大小是( )ABCD5、下列以a,b,c为边的三角形不是直角三角形的是( )Aa1,b1,c2Ba2,b3,c13Ca3,b5,c7Da6,b8,c106、如图,在ABC中,B
3、AC45,E是AC中点,连接BE,CDBE于点F,CDBE若AD,则BD的长为()A2B2C2D37、如图,RtABC中,B90,点P在边AB上,CP平分ACB,PB3cm,AC10cm,则APC的面积是( )A15cm2B22.5cm2C30cm2D45cm28、如图,在等腰中,BD平分,交AC于点D,若cm,则的周长为( )A8cmB10cmC12cmD14cm9、如图,在ABC中,ABAC6cm,AD,CE是ABC的两条中线,CE4cm,P是AD上的一个动点,则BP+EP的最小值是()A3cmB4cmC6cmD10cm10、下列事件中,属于必然事件的是()A13人中至少有2个人生日在同月
4、B任意掷一枚质地均匀的硬币,落地后正面朝上C从一副扑克牌中随机抽取一张,抽到的是红桃AD以长度分别是3cm,4cm,6cm的线段为三角形三边,能构成一个直角三角形第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知直角三角形ABC的三条边长分别为3,4,5,在ABC所在平面内画一条直线,将ABC分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画_条2、如图,点D是ABC内一点,ADCD,BADBCD,则以下结论:ABAC;DACDCA;BD平分ABC;BD与AC的位置关系是互相垂直其中正确的是:_3、如图,正三角形ABC中,D是AB的中点,于点E,过点E作
5、与BC交于点F若,则的周长为_4、以线段MN为底边的等腰三角形的顶角顶点的轨迹是 _5、在ABC中,C=90,AD是ABC的角平分线,BC=6、AC=8、AB=10,则点D到AB的距离为_三、解答题(5小题,每小题10分,共计50分)1、如图,E为BC中点,DE平分(1)求证:平分;(2)求证:;(3)求证:2、下面是小军设计的“过线段端点作这条线段的垂线”的尺规作图过程已知:线段AB求作:AB的垂线,使它经过点A作法:如图,以点A为圆心,AB长为半径作弧,交线段BA的延长线于点C; 分别以点B和点C为圆心,大于BC的长为半径作弧,两弧相交于直线BC上方的点D;作直线AD所以直线AD就是所求作
6、的垂线根据小军设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明证明:连接CD,BDBD= ,AB= ,ADAB( )(填推理的依据)3、如图,已知在平面直角坐标系中,点A(0,n)是y轴上的一点,且n使得n-4+4-n有意义,以OA为边在第一象限内作等边三角形OAB(1)求点B的坐标;(2)若点C是在射线BO上第三象限内的一点,连接AC,以AC为边在y轴右侧画等边三角形ACD,连接BD,OD请先依题意补全图形后,求ABD的度数;当OD最小时,求ACD的边长4、(1)我们把两个面积相等但不全等的三角形叫做“偏等积三角形”,如图1,ABC中,AC=7,BC=
7、9,AB=10,P为AC上一点,当AP=_时,ABP与CBP是偏等积三角形;(2)如图2,四边形ABED是一片绿色花园,ACB、DCE是等腰直角三角形,ACB=DCB=900BCE90ACD与BCE是偏等积三角形吗?请说明理由;已知BE=60m,ACD的面积为2100m2如图3,计划修建一条经过点C的笔直的小路CF,F在边上,FC的延长线经过AD中点G若小路每米造价600元,请计算修建小路的总造价5、如图1,ABC中,CDAB于D,且BD:AD:CD=2:3:4;(1)试说明ABC是等腰三角形;(2)已知SABC=40cm2,如图2,动点M从点B出发以每秒1cm的速度沿线段BA向点A运动,同时
8、动点N从点A出发以相同速度沿线段AC向点C运动,当其中一点到达终点时整个运动都停止设点M运动的时间为(秒)若DMN的边与BC平行,求t的值;在点N运动的过程中,能否成为等腰三角形?若能,求出的值;若不能,请说明理由-参考答案-一、单选题1、B【分析】连接,设交于点,先判定为线段的垂直平分线,再判定,然后由全等三角形的性质可得答案【详解】解:如图,连接,设交于点,为的中点,点在线段的垂直平分线上,为等边三角形,点在线段的垂直平分线上,为线段的垂直平分线,点在射线上,当时,的值最小,如图所示,设点为垂足,则在和中,解得:,故选:B【点睛】本题考查了全等三角形的判定与性质、线段垂直平分线的判定与性质
9、,数形结合并明确相关性质及定理是解题的关键2、C【分析】先计算两条小的边的平方和,再计算最长边的平方,根据勾股定理的逆定理判断解题【详解】解:A.,不是直角三角形,故A不符合题意;B. ,不是直角三角形,故B不符合题意;C. ,是直角三角形,故C不符合题意;D. ,不是直角三角形,故D不符合题意,故选:C【点睛】本题考查勾股定理的逆定理,是重要考点,掌握相关知识是解题关键3、D【分析】利用勾股定理求出CD的长,进而求出BC的长, 即可求解【详解】解:, , , , , , , ,故选:D【点睛】本题考查勾股定理的应用,解题关键是掌握勾股定理4、A【分析】根据等腰三角形的两底角相等,即可求解【详
10、解】解:等腰三角形的顶角是,这个三角形的一个底角的大小是 故选:A【点睛】本题主要考查了等腰三角形的性质,熟练掌握等腰三角形的两底角相等是解题的关键5、C【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可如果有这种关系,这个就是直角三角形【详解】解:、,该三角形是直角三角形,故此选项不符合题意;、,该三角形是直角三角形,故此选项不符合题意;、,该三角形不是直角三角形,故此选项符合题意;、,该三角形是直角三角形,故此选项不符合题意;故选:C【点睛】本题考查了勾股定理的逆定理,解题的关键是在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定
11、最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断6、B【分析】过点C作CNAB于点N,连接ED,EN,利用SAS证明DCEBEN,可得EDNB,CEDENB135,得ADE是等腰直角三角形,可得ADDNBN,进而可得结果【详解】解:如图,过点C作CNAB于点N,连接EN,CNA90,BAC45,NCAA45,ANCN,点E是AC的中点,ANECNE45,CENAEN90,CEF+FEN90,CDBE,CFE90,CEF+FCE90,DCEBEN,在DCE和BEN中,DCEBEN(SAS),EDNB,CEDENB135,AED45AACN,ADDE,AECE,AE=EN,
12、ADDN,ADDNBN,BD2AD2故选B【点睛】本题主要考查了全等三角形的性质与判定,等腰直角三角形的性质与判定,解题的关键在于能够正确作出辅助线,构造全等三角形求解7、A【分析】过点P作PDAC于D,由角平分线的性质可得PD=PB=3cm,然后利用三角形面积公式求解即可【详解】解:如图所示,过点P作PDAC于D,CP平分ACB,B=90,PDAC,PD=PB=3cm,故选A【点睛】本题主要考查了角平分线的性质,三角形面积,熟知角平分线上的点到角两边的距离相等是解题的关键8、B【分析】根据角平分线上的点到角的两边距离相等可得DE=AD,利用“HL”证明RtABD和RtEBD全等,根据全等三角
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021 2022 学年度 强化 训练 北师大 八年 级数 下册 第一章 三角形 证明 单元测试 试题 详细 解析
链接地址:https://www.taowenge.com/p-30668333.html
限制150内