2021-2022学年北师大版九年级数学下册第二章二次函数定向攻克练习题.docx
《2021-2022学年北师大版九年级数学下册第二章二次函数定向攻克练习题.docx》由会员分享,可在线阅读,更多相关《2021-2022学年北师大版九年级数学下册第二章二次函数定向攻克练习题.docx(23页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、北师大版九年级数学下册第二章二次函数定向攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、将二次函数用配方法化为的形式,结果为( )ABCD2、二次函数y2(x2)24的最小值为( )A2B2C4D43
2、、如图,线段AB5,动点P以每秒1个单位长度的速度从点A出发,沿线段AB运动至点B,以点A为圆心,线段AP长为半径作圆设点P的运动时间为t,点P,B之间的距离为y,A的面积为S,则y与t,S与t满足的函数关系分别是( )A正比例函数关系,一次函数关系B一次函数关系,正比例函数关系C一次函数关系, 二次函数关系D正比例函数关系,二次函数关系4、由二次函数,可知( )A开口向上B对称轴为直线x1C最大值为1D顶点坐标为(1,1)5、在平面直角坐标系中,将抛物线yx2向上平移一个单位长度,再向右平移一个单位长度,得到的抛物线解析式是( )Ay(x1)21By(x1)21Cy(x1)21Dy(x1)2
3、16、将抛物线yx2先向右平移5个单位长度,再向上平移3个单位长度,所得到的抛物线的解析式为()Ay(x+3)2+5By(x3)2+5Cy(x+5)2+3Dy(x5)2+37、在平面直角坐标系中,将二次函数的图象在轴上方的部分沿轴翻折后,所得新函数的图象如图所示(实线部分)若直线与新函数的图象有3个公共点,则的值是( )A0B-3C-4D-58、抛物线的顶点坐标是( )A(1,2)B(1,)C(,2)D(,)9、下图是抛物线y = ax2 + bx + c的示意图,则a的值可以是( )A1B0C- 1D- 210、把抛物线向右平移1个单位长度,得到新的抛物线的解析式是()ABCD第卷(非选择题
4、 70分)二、填空题(5小题,每小题4分,共计20分)1、点A(-1,y1),B(4,y2)是二次函数y(x1)2图象上的两个点,则y1_y2(填“”,“”或“”)2、抛物线与x轴交于点(2,0),(1,0),利用两点式抛物线解析式可设为:_3、抛物线yx28x4与直线y5的交点坐标是_4、写出一个开口向下,且对称轴在轴左侧的抛物线的表达式:_5、下列关于二次函数yx22mx2m3(m为常数)的结论:该函数的图象与x轴总有两个公共点;若x1时,y随x的增大而增大,则m1;无论m为何值,该函数的图象必经过一个定点;该函数图象的顶点一定不在直线y2的上方其中正确的是_(填写序号)三、解答题(5小题
5、,每小题10分,共计50分)1、如图,将小球从地面击出,小球的飞行路线是一条抛物线.如果不考虑空气阻力,小球的飞行高度(单位:)与飞行时间(单位:)之间具有函数关系:(1)小球的飞行高度能否达到?如果能,需要多少飞行时间?(2)直接写出小球从飞出到落地需要的时间;(3)小球的飞行高度能否达到?为什么?2、如图,在平面直角坐标系xOy中, 抛物线与轴交于点 和 点,与轴交于点, 顶点为(1)求该抛物线的表达式的顶点的坐标;(2)将抛物线沿轴上下平移, 平移后所得新拋物线顶点为, 点的对应点为如果点落在线段上, 求的度数;设直线与轴正半轴交于点, 与线段交于点, 当时, 求平移后新抛物线的表达式3
6、、如图,在平面直角坐标系中,抛物线过点,(1)求这条抛物线的解析式;(2)当时,的取值范围是_4、如图,抛物线yax2+bx+6与x轴交于A(2,0),B(8,0)两点,与y轴交于点C(1)求抛物线的解析式;(2)点P是抛物线上一动点,当PCBBCO时,求点P的横坐标5、某超市销售一种饮料,每瓶进价为6元当每瓶售价为10元时,日均销售量为160瓶经市场调查表明,每瓶售价每增加0.5元,日均销售量减少10瓶(1)当每瓶售价为11元时,日均销售量为 瓶;(2)当每瓶售价为多少元时,所得日均总利润为700元?(3)当每瓶售价为多少元时,所得日均总利润最大?最大日均总利润为多少元?-参考答案-一、单选
7、题1、D【分析】利用配方法,把一般式转化为顶点式即可【详解】解:,故选:D【点睛】本题考查了二次函数的一般式,顶点式,正确利用配方法是解答本题的关键,配方法方法是,先提出二次项系数,再加上一次项系数的一半的平方来凑完全平方式2、C【分析】对于二次函数 当 函数图象的开口向上,函数有最小值,当时,最小值为 根据性质直接可得答案.【详解】解:由二次函数y2(x2)24可得: 函数图象的开口向上,函数有最小值,当时, 故选C【点睛】本题考查的是二次函数的性质,二次函数的最值,理解图象的开口向上,函数有最小值及求解最小值是解本题的关键.3、C【分析】根据题意分别列出y与t,S与t的函数关系,进而进行判
8、断即可【详解】解:根据题意得,即,是一次函数;A的面积为,即,是二次函数故选C【点睛】本题考查了列函数表达式,一次函数与二次函数的识别,根据题意列出函数表达式是解题的关键4、B【分析】由二次项系数正负,判断开口方向,利用对称轴的公式,求出对称轴,将对称轴代入二次函数表达式,即可求出最值和顶点坐标【详解】解:A、由于,开口方向向下,故A错误B、对称轴为直线,故B正确C、将代入函数表达式中求得:,最大值为,故C错误D、根据对称轴及最值可知,顶点坐标为(1,1),故D错误故选:B【点睛】本题主要是考查了二次函数的基本性质,熟练掌握二次函数的基本性质,是求解该题的关键5、B【分析】直接根据“左加右减,
9、上加下减”的规律写出即可【详解】解:向上平移两个单位长度,再向右平移一个单位长度后的顶点坐标,所得抛物线解析式是y=(x-1)2+1,故选:B【点睛】本题主要考查的是函数图象的平移,用平移规律“左加右减,上加下减”直接代入函数解析式求得平移后的函数解析式6、D【分析】根据抛物线的平移规律求解即可【详解】解:将抛物线yx2先向右平移5个单位长度,再向上平移3个单位长度,所得到的抛物线的解析式为故选:D【点睛】此题考查了抛物线的平移规律,解题的关键是熟练掌握抛物线的平移规律:上加下减,左加右减7、C【分析】由图可知,当与新函数有3个交点时,过新函数的顶点,求出点的坐标,其纵坐标即为所求【详解】解:
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021 2022 学年 北师大 九年级 数学 下册 第二 二次 函数 定向 攻克 练习题
限制150内