2021-2022年收藏的精品资料高考数学理二轮专项复习专题13 不等式选讲.docx
《2021-2022年收藏的精品资料高考数学理二轮专项复习专题13 不等式选讲.docx》由会员分享,可在线阅读,更多相关《2021-2022年收藏的精品资料高考数学理二轮专项复习专题13 不等式选讲.docx(10页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、专题13 不等式选讲不等式选讲是高考的选考内容之一,考查的重点是不等式的证明、绝对值不等式的解法以及数学归纳法在不等式中的应用等,命题的热点是绝对值不等式的解法,以及绝对值不等式与函数的综合问题的求解本部分命题形式单一、稳定,是三道选考题目中最易得分的,所以可重点突破.【知识要点】1含有绝对值的不等式的解法(1)|f(x)|a(a0)f(x)a或f(x)a;(2)|f(x)|a(a0)af(x)a;(3)|xa|xb|c(c0)和|xa|xb|c(c0)型不等式的解法法一:利用绝对值不等式的几何意义求解,体现了数形结合的思想;法二:利用“零点分段法”求解,体现了分类讨论的思想;2绝对值三角不等
2、式|a|b|ab|a|b|.此性质可用来解不等式或证明不等式3基本不等式定理1:设a,bR,则a2b22ab.当且仅当ab时,等号成立定理2:如果a,b为正数,则,当且仅当ab时,等号成立定理3:如果a,b,c为正数,则,当且仅当abc时,等号成立定理4:(一般形式的算术几何平均不等式)如果a1、a2、an为n个正数,则,当且仅当a1a2an时,等号成立4柯西不等式(1)设a,b,c,d为实数,则(a2b2)(c2d2)(acbd)2,当且仅当adbc时等号成立(2)若ai,bi(iN*)为实数,则(a)(b)(aibi)2,当且仅当bi0(i1,2,n)或存在一个数k,使得aikbi(i1,
3、2,n)时,等号成立(3)柯西不等式的向量形式:设,为平面上的两个向量,则|a|,当且仅当这两个向量同向或反向时等号成立【复习要求】(1)理解绝对值的几何意义,并能利用绝对值不等式的几何意义证明以下不等式: (2)会利用绝对值的几何意义求解以下类型的不等式: (3)会用不等式和证明一些简单问题。能够利用平均值不等式求一些特定函数的极值(4)了解证明不等式的基本方法:比较法、综合法、分析法、反证法、放缩法【例题分析】例1(1)设函数f(x)|2x1|x4|.解不等式f(x)2;求函数yf(x)的最小值解解法一:令2x10,x40分别得x,x4.原不等式可化为:或或所以原不等式的解集为:.解法二:
4、f(x)|2x1|x4|画出f(x)的图象y2与f(x)图象的交点为(7,2),(,2)由图象知f(x)2的解集为.由的解法二中的图象知:f(x)min.解绝对值不等式的步骤和方法:(1)用零点分段法解绝对值不等式的步骤求零点划区间、去绝对值号分别解去掉绝对值的不等式取每个结果的并集,注意在分段时不要遗漏区间的端点值(2)用图象法求解不等式用图象法,数形结合可以求解含有绝对值的不等式,使得代数问题几何化,既通俗易懂,又简洁直观,是一种较好的方法例2:设函数f(x)|3x1|ax3.若a1,解不等式f(x)4;若函数f(x)有最小值,求a的取值范围解当a1时,f(x)|3x1|x3.当x时,f(
5、x)4可化为3x1x34,解得x;当x时,f(x)4可化为3x1x34,解得0x.综上可得,原不等式的解集为.f(x)|3x1|ax3,函数f(x)有最小值的充要条件为,即3a3.例3(1)若函数f(x)|x1|2|xa|的最小值为5,则实数a_.解析当a1时,f(x)3|x1|0,不满足题意;当a1时,f(x)f(x)minf(a)a12a5,解得a4.答案4或6例4已知函数f(x)|x1|2|xa|,a0.当a1时,求不等式f(x)1的解集;若f(x)的图象与x轴围成的三角形面积大于6,求a的取值范围解当a1时,f(x)1化为|x1|2|x1|10.当x1时,不等式化为x40,无解;当1x
6、0,解得x0,解得1x1的解集为.由题设可得,f(x)所以函数f(x)的图象与x轴围成的三角形的三个顶点分别为A,B(2a1,0),C(a,a1),ABC的面积为(a1)2.由题设得(a1)26,故a2.所以a的取值范围为(2,)1解决含参数的绝对值不等式问题,常用以下两种方法(1)将参数分类讨论,将其转化为分段函数解决;(2)借助于绝对值的几何意义,先求出f(x)的最值或值域,然后再根据题目要求,求解参数的取值范围2解答此类问题应熟记以下转化:f(x)a恒成立f(x)mina;f(x)a恒成立f(x)maxa有解f(x)maxa;f(x)a有解f(x)mina无解f(x)maxa;f(x)0
7、,b0,且ab.证明:ab2;a2a2与b2b0,b0,得ab1.由基本不等式及ab1,有ab22,即ab2,当且仅当ab1时等号成立假设a2a2与b2b2同时成立,则由a2a0得0a1;同理,0b1,从而ab1,这与ab1矛盾故a2a2与b2b2不可能同时成立构造基本不等式求出代数式的最值,直接证明不等式成立;直接证明较难,假设两个不等式同时成立,利用的结论,得出矛盾,则假设不成立不等式证明的常用方法不等式证明的常用方法是:比较法、综合法与分析法其中运用综合法证明不等式时,主要是运用基本不等式与柯西不等式证明,与绝对值有关的不等式证明常用绝对值三角不等式证明过程中一方面要注意不等式成立的条件
8、,另一方面要善于对式子进行恰当的转化、变形例7(1)已知a,b(0,),ab1,x1,x2(0,)求的最小值;求证:(ax1bx2)(ax2bx1)x1x2.解因为a,b(0,),ab1,x1,x2(0,),所以33336,当且仅当,ab,即ab且x1x21时,有最小值6.证法一:由a,b(0,),ab1,x1,x2(0,),及柯西不等式可得:(ax1bx2)(ax2bx1)()2()2()2()2()2(ab)2x1x2,当且仅当,即x1x2时取得等号证法二:因为a,b(0,),ab1,x1,x2(0,),所以(ax1bx2)(ax2bx1)a2x1x2abxabxb2x1x2x1x2(a2
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021-2022年收藏的精品资料高考数学理二轮专项复习专题13 不等式选讲 2021 2022 收藏 精品 资料 高考 学理 二轮 专项 复习 专题 13 不等式
限制150内