2022高考数学 必考热点大调查16 三角函数的性质和解三角形问题.doc
《2022高考数学 必考热点大调查16 三角函数的性质和解三角形问题.doc》由会员分享,可在线阅读,更多相关《2022高考数学 必考热点大调查16 三角函数的性质和解三角形问题.doc(12页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2014高考数学必考热点大调查:热点16三角函数的性质和解三角形问题【最新考纲解读】1.借助图象理解正弦函数、余弦函数在0,2,正切函数在上的性质(如单调性、最大和最小值、图象与x轴交点等)2.结合具体实例,了解yAsin(x)的实际意义;能借助计算器或计算机画出yAsin(x)的图象,观察参数A,对函数图象变化的影响3.会用三角函数解决一些简单实际问题,体会三角函数是描述周期变化现象的重要函数模型4正弦定理和余弦定理掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题5应用能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题【回归课本整合】1三角函数的定义域:(1
2、) 正弦函数、余弦函数的定义域都是R;(2) 正切函数定义域.2三角函数的值域:(1)正弦、余弦函数值域都是.对,当时,取最大值1;当时,取最小值1;对,当时,取最大值1,当 时,取最小值1.(2)正切函数值域是R,在上面定义域上无最大值也无最小值.3.三角函数的单调区间:(1)上单调递增,在单调递减;(2)在上单调递减,在上单调递增;(3) 在开区间内都是增函数.注意在整个定义域上不具有单调性.4.型单调区间的确定(A、0)的单调性,把看作一个整体,放在正弦函数的递增区间内解出,为上增函数;放在正弦函数的递减区间内解出为上减函数()对与的单调区间的求解和上述类似.5.三角函数的周期性(1)正
3、弦函数、余弦函数的最小正周期都是2;正切函数的最小正周期是,它与直线的两个相邻交点之间的距离是一个周期.(2)函数图象在其对称轴处取得最大值或最小值,且相邻的最大值与最小值间的距离为其函数的半个周期;函数图象与x轴的交点是其对称中心,相邻两对称中心间的距离也是其函数的半个周期;函数取最值的点与相邻的与x轴的交点间的距离为其函数的个周期.6型周期和的最小正周期都是;最小正周期.7.三角函数的对称性(1)正弦函数是奇函数,对称中心是,对称轴是直线;(2)余弦函数是偶函数,对称中心是,对称轴是直线.注意:正(余)弦型函数的对称轴为过最高点或最低点且垂直于轴的直线,对称中心为图象与轴的交点.(3)正切
4、函数是奇函数,对称中心是.注意:正(余)切型函数的对称中心有两类:一类是图象与轴的交点,另一类是渐近线与轴的交点,但无对称轴,这是与正弦、余弦函数的不同之处.8.求角问题(1)内角和定理:三角形三角和为.任意两角和与第三个角总互补,任意两半角和与第三个角的半角总互余.(2) 正弦定理:(R为三角形外接圆的半径).正弦定理的变式:,;(3)余弦定理:,;(4)利用面积公式:,.9.求边问题(1)边与边关系:a + b c,b + c a,c + a b,ab c,bc b;(2)正弦定理的变式;(3)余弦定理:.变形式:;(4)利用面积公式:;(5)射影定理:.10.求三角形的面积问题三角形的面
5、积公式:(1)ahabhb(ha、hb、hc分别表示a、b、c上的高);(2);(3)(其中为三角形内切圆半径),; (4).(与向量的数量积联系)11.求三角形的综合问题(1) 求解三角形中的问题时,一定要注意这个特殊性:;.(2)求解三角形中含有边角混合关系的问题时,常运用正弦定理、余弦定理实现边角互化,达到角的统一或边的统一.(3)在ABC中,熟记并会证明:A,B,C成等差数列的充分必要条件是B=60;ABC是正三角形的充分必要条件是A、B、C成等差数列且成等比数列.(4)锐角三角形三内角都是锐角三内角的余弦值为正值任两角和都是钝角任意两边的平方和大于第三边的平方;钝角角三角形三内角一个
6、为钝角一个角的余弦值为负值两锐角的和仍为锐角两个锐角对应的两边的平方和小于第三边的平方.(5)三角形内常见的不等关系;锐角中,;钝角中,设为钝角,则,.12.三角函数的最值求三角函数的最值,主要利用正、余弦函数的有界性,一般通过三角变换化为下列基本类型处理:(1),设化为一次函数在闭区间上的最值求之;(2),引入辅助角,化为求解方法同类型(1);(3),设,化为二次函数在上的最值求之;(4),设化为二次函数在闭区间上的最值求之;(5),设化为用法求值;当时,还可用平均值定理求最值;(6)根据正弦函数的有界性,可转换为解决;(7)的最值,可转化为讨论点与动点连线的斜率,而动点在单位圆上运动,利用
7、几何方法易得所求三角函数的最值.【方法技巧提炼】1如何判断函数的奇偶性根据三角函数的奇偶性,利用诱导公式可推得函数的奇偶性,常见的结论如下:(1)若为偶函数,则有;若为奇函数则有;(2)若为偶函数,则有;若为奇函数则有;(3)若为奇函数则有.2.如何确定函数当时函数的单调性 对于函数求其单调区间,要特别注意的正负,若为负值,需要利用诱导公式把负号提出来,转化为的形式,然后求其单调递增区间,应把放在正弦函数的递减区间之内;若求其递减区间,应把放在正弦函数的递增区间之内.3.求三角函数的周期的方法(1)定义法:使得当x取定义域内的每一个值时,都有f (x+T)=f (x).利用定义我们可采用取值进
8、行验证的思路,非常适合选择题;(2)公式法:和的最小正周期都是,的周期为.要特别注意两个公式不要弄混;(3)图象法:可以画出函数的图象,利用图象的重复的特征进行确定,一般适应于不易直接判断,但是能够容易画出函数草图的函数;(4)绝对值或平方对三角函数周期性的影响:一般说来,某一周期函数解析式加绝对值或平方,其周期性是:弦减半、切不变既为周期函数又是偶函数的函数自变量加绝对值,其周期性不变,其它不定. 如的周期都是, 但的周期为,而,的周期不变.4.余弦定理的重要应用三角形的余弦定理作为解决三角形问题的利剑,必须熟练掌握应用.为此,就其常见的几种变形形式,介绍如下.联系完全平方式巧过渡:由则.联
9、系重要不等式求范围:由,则当且仅当等号成立.联系数量积的定义式妙转化:在中,由.5.如何恰当选择正弦定理与余弦定理解题利用正弦定理解三角形时,可将正弦定理视为方程或方程组,利用方程思想处理已知量与未知量的关系.熟记正弦定理同三角形外接圆半径、三角形面积之间的关系等结论,对于相关问题是十分有益的.利用正弦定理可解决以下两类问题:一是已知两角和一角的对边,求其他边角;二是已知两边和一边对应的角,求其他边角,由于此时的三角形不能确定,应对它进行分类讨论.利用正弦定理解题一般适应的特点(1)如果所给的等式两边有齐次的边的形式或齐次的角的正弦的形式,可以利用正弦定理进行边角互换,这是高考中常见的形式;(
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022高考数学 必考热点大调查16 三角函数的性质和解三角形问题 2022 高考 数学 必考 热点 大调 16 三角函数 性质 和解 三角形 问题
限制150内