学年高中数学第四章导数应用..函数的极值训练含解析北师大版选修-.docx
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《学年高中数学第四章导数应用..函数的极值训练含解析北师大版选修-.docx》由会员分享,可在线阅读,更多相关《学年高中数学第四章导数应用..函数的极值训练含解析北师大版选修-.docx(6页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、1.2函数的极值A组1.若函数f(x)=2x3-3x2+a的极大值为6,则a的值是()A.0B.1C.5D.6解析:f(x)=2x3-3x2+a,f(x)=6x2-6x=6x(x-1).令f(x)=0,得x=0或x=1,经判断易知极大值为f(0)=a=6.答案:D2.函数y=14x4-13x3的极值点的个数为()A.0B.1C.2D.3解析:y=x3-x2=x2(x-1),由y=0得x1=0,x2=1.当x变化时,y,y的变化情况如下表:x(-,0)0(0,1)1(1,+)y-0-0+y无极值极小值因此函数只有一个极值点.答案:B3.下列函数中,x=0是其极值点的是()A.y=-x3B.y=-
2、cos xC.y=sin x-xD.y=1x解析:A.y=-3x20恒成立,所以函数在R上是减少的,无极值点.B.y=sinx,当-x0时函数是减少的,当0x0得m的取值范围为(-,-3)(6,+).答案:B5.已知a0,b0,且函数f(x)=4x3-ax2-2bx+2在x=1处有极值,若t=ab,则t的最大值为()A.2B.3C.6D.9解析:f(x)=4x3-ax2-2bx+2,f(x)=12x2-2ax-2b.又f(x)在x=1处取得极值,f(1)=12-2a-2b=0,a2+24b0.a+b=6,t=aba+b22=9(当且仅当a=b=3时等号成立),tmax=9,故选D.答案:D6.
3、函数f(x)=a+lnxx(aR)的极大值等于.解析:f(x)=(1-a)-lnxx2,令f(x)=0,得x=e1-a,当0x0;当xe1-a时,f(x)0,所以函数的极大值等于f(e1-a)=1e1-a=ea-1.答案:ea-17.若函数f(x)=x3+x2-ax-4在区间(-1,1)上恰有一个极值点,则实数a的取值范围为.解析:由题意,f(x)=3x2+2x-a,则f(-1)f(1)0,即(1-a)(5-a)0,解得1a5,另外,当a=1时,函数f(x)=x3+x2-x-4在区间(-1,1)上恰有一个极值点,当a=5时,函数f(x)=x3+x2-5x-4在区间(-1,1)没有极值点.故实数
4、a的取值范围为1,5).答案:1,5)8.已知函数f(x)=x3+ax2+bx+4在x=1处取得极值52.(1)求a,b的值;(2)求函数的另一个极值.解(1)因为f(x)=x3+ax2+bx+4,所以f(x)=3x2+2ax+b.依题意可得f(1)=0,f(1)=52,即3+2a+b=0,1+a+b+4=52,解得a=-12,b=-2.(2)由(1)知f(x)=x3-12x2-2x+4,f(x)=3x2-x-2=(3x+2)(x-1).令f(x)=0,得x=-23或x=1,当x变化时,f(x),f(x)的变化情况如下表:x-,-23-23-23,11(1,+)f(x)+0-0+f(x)极大值
5、极小值所以函数的另一个极值在x=-23处取得,是极大值,极大值为f-23=13027.9.导学号01844045已知二次函数f(x)=ax2+bx-1在x=-1处取得极值,且f(x)的图像在点(0,-1)处的切线与直线2x-y=0平行.(1)求f(x)的解析式;(2)求函数g(x)=xf(x)+2x的极值.解(1)由f(x)=ax2+bx-1,得f(x)=2ax+b.由题设,可得f(-1)=0,f(0)=2,即-2a+b=0,b=2,解得a=1,b=2.所以f(x)=x2+2x-1.(2)由(1),得g(x)=xf(x)+2x=x3+2x2+x,所以g(x)=3x2+4x+1=(3x+1)(x
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 学年 高中数学 第四 导数 应用 函数 极值 训练 解析 北师大 选修
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内