【2022年高考数学题典解题方法】-2022年高考数学真题.docx
《【2022年高考数学题典解题方法】-2022年高考数学真题.docx》由会员分享,可在线阅读,更多相关《【2022年高考数学题典解题方法】-2022年高考数学真题.docx(6页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、【2017年高考数学题典解题方法】 2017年高考数学真题 2017高考数学复习技巧及解题方法有什么吗?今天,小编为你带来了2017年高考数学题典解题方法。 2017年高考数学题典解题方法是什么 高考数学解题思想一:函数与方程思想 函数思想是指运用运动变化的观点,分析和研究数学中的数量关系,通过建立函数关系(或构造函数)运用函数的图像和性质去分析问题、转化问题和解决问题;方程思想,是从问题的数量关系入手,运用数学语言将问题转化为方程(方程组)或不等式模型(方程、不等式等)去解决问题。利用转化思想我们还可进行函数与方程间的相互转化。 高考数学解题思想二:数形结合思想 中学数学研究的对象可分为两大
2、部分,一部分是数,一部分是形,但数与形是有联系的,这个联系称之为数形结合或形数结合。它既是寻找问题解决切入点的“法宝”,又是优化解题途径的“良方”,因此我们在解答数学题时,能画图的尽量画出图形,以利于正确地理解题意、快速地解决问题。 高考数学解题思想三:特殊与一般的思想 用这种思想解选择题有时特别有效,这是因为一个命题在普遍意义上成立时,在其特殊情况下也必然成立,根据这一点,我们可以直接确定选择题中的正确选项。不仅如此,用这种思想方法去探求主观题的求解策略,也同样精彩。 高考数学解题思想四:极限思想解题步骤 极限思想解决问题的一般步骤为: (1)对于所求的未知量,先设法构思一个与它有关的变量;
3、 (2)确认这变量通过无限过程的结果就是所求的未知量; (3)构造函数(数列)并利用极限计算法则得出结果或利用图形的极限位置直接计算结果。 高考数学解题思想五:分类讨论思想 我们常常会遇到这样一种情况,解到某一步之后,不能再以统一的方法、统一的式子继续进行下去,这是因为被研究的对象包含了多种情况,这就需要对各种情况加以分类,并逐类求解,然后综合归纳得解,这就是分类讨论。引起分类讨论的原因很多,数学概念本身具有多种情形,数学运算法则、某些定理、公式的限制,图形位置的不确定性,变化等均可能引起分类讨论。在分类讨论解题时,要做到标准统一,不重不漏。 2017高考生提高解题能力的方法 一、例题分析法。
4、 在夯实基础的前提下,经过老师的指导,要着力研究一些典型例题,提升解题能力。很多同学都在收集典型例题,都知道应该对典型例题进行研究,问题在于你如何研究它,我认为应该对典型例题进行全方位立体式的研究。 面对一道典型例题,在做这道题以前你必须考虑,问题的条件是什么,可以进一步细微化、明确化。在不知道如何解的时候,将题目条件与结论做一个比较,明确得到结论需要什么样的条件,或者将问题转化为一个等价命题。在问题未得到解决之前,任何一个解题思路都带有试探性。因此,应须抓住根据解题过程中新揭示出的信息,及时作出调整和相应的判断:坚持,还是放弃。实际上只要总体方向确定,抓住解题的入口,就可以深入下去。随着解决
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022年高考数学题典解题方法 2022 年高 数学题 解题 方法 数学
限制150内