【走向高考】2021届高三数学一轮基础巩固 第8章 第5节 双曲线(含解析)新人教B版.doc
《【走向高考】2021届高三数学一轮基础巩固 第8章 第5节 双曲线(含解析)新人教B版.doc》由会员分享,可在线阅读,更多相关《【走向高考】2021届高三数学一轮基础巩固 第8章 第5节 双曲线(含解析)新人教B版.doc(11页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、【走向高考】2016届 高三数学一轮基础巩固 第8章 第5节 双曲线 新人教B版一、选择题1(文)(2014广东文)若实数k满足0k5,则曲线1与曲线1的()A实半轴长相等B虚半轴长相等C离心率相等D焦距相等答案D解析0k5,两方程都表示双曲线,由双曲线中c2a2b2得其焦距相等,选D.(理)(2014广东理)若实数k满足0k9,则曲线1与曲线1的()A焦距相等 B实半轴长相等C虚半轴长相等D离心率相等答案A解析由0k0,b0)左支上的一点,F1、F2分别是双曲线的左、右焦点,则以|PF2|为直径的圆与以双曲线的实轴为直径的圆的位置关系是()A内切B外切C内切或外切D不相切答案A解析取PF2的
2、中点M,则2|OM|F1P|,且O、M为两圆圆心,OM为圆心距由双曲线定义可知|PF2|PF1|2a,即2|MF2|2|OM|2a,|OM|MF2|a,即圆心距等于两圆半径之差,则两圆内切(理)已知F为双曲线1(a0,b0)的右焦点,点P为双曲线右支上任意一点,则以线段PF为直径的圆与圆x2y2a2的位置关系是()A相离B相切C相交D不确定答案B解析设双曲线左焦点为F1,PF的中点为C,则由双曲线的定义知,|PF1|PF|2a,C、O分别为PF、F1F的中点,|PF1|2|CO|,|PF|2|PC|,|CO|PC|a,即|PC|a|CO|,两圆外切3(文)(2014河北石家庄第二次质检)已知F
3、是双曲线1(a0)的右焦点,O为坐标原点,设P是双曲线C上一点,则POF的大小不可能是()A15B25C60D165答案C解析双曲线的渐近线方程为0,两渐近线的斜率k,渐近线的倾斜角分别为30,150,所以POF的大小不可能是60.(理)(2014甘肃兰州、张掖诊断)已知双曲线1(a0,b0)的左、右焦点分别为F1,F2,以|F1F2|为直径的圆与双曲线渐近线的一个交点为(3,4),则此双曲线的方程为()A.1B1C.1D1答案C解析因为以|F1F2|为直径的圆与双曲线渐近线的一个交点为(3,4),所以c5,又c2a2b2,所以a3,b4,所以以此双曲线的方程为1.4(2014山东烟台一模)双
4、曲线C1的中心在原点,焦点在x轴上,若C1的一个焦点与抛物线C2:y212x的焦点重合,且抛物线C2的准线交双曲线C1所得的弦长为4,则双曲线C1的实轴长为()A6B2C.D2答案D解析设双曲线C1的方程为1(a0,b0)由已知,抛物线C2的焦点为(3,0),准线方程为x3,即双曲线中c3,a2b29,又抛物线C2的准线过双曲线的焦点,且交双曲线C1所得的弦长为4,所以2,与a2b29联立,得a22a90,解得a,故双曲线C1的实轴长为2,故选D.5(2015焦作市期中)已知双曲线y21(a0)的实轴长为2,则该双曲线的离心率为()A.BC.D答案B解析由条件知22,a1,又b1,c,e.6(
5、文)已知双曲线1,直线l过其左焦点F1,交双曲线左支于A、B两点,且|AB|4,F2为双曲线的右焦点,ABF2的周长为20,则m的值为()A8B9C16D20答案B解析由已知,|AB|AF2|BF2|20,又|AB|4,则|AF2|BF2|16.据双曲线定义,2a|AF2|AF1|BF2|BF1|,所以4a(|AF2|BF2|)(|AF1|BF1|)16412,即a3,所以ma29,故选B.(理)(2014江西赣州四校联考)已知双曲线1(a0,b0)的左焦点为F1,左、右顶点分别为A1,A2,P为双曲线上任意一点,则分别以线段PF1,A1A2为直径的两个圆的位置关系为()A相交B相切C相离D以
6、上情况都有可能答案B解析设以线段PF1,A1A2为直径的两圆的半径分别为r1,r2,若P在双曲线左支上,如图所示,则|O2O|PF2|(|PF1|2a)|PF1|ar1r2,即圆心距为两圆半径之和,两圆外切若P在双曲线右支上,同理求得|OO1|r1r2,故此时两圆内切综上,两圆相切,故选B.二、填空题7(文)过双曲线2x2y220的右焦点作直线l交双曲线于A、B两点,若|AB|4,则这样的直线有_条答案3解析过双曲线右焦点作直线l交双曲线于A、B两点,若lx轴,则|AB|4;若l经过顶点,此时|AB|2,因此当l与双曲线两支各交于一点A、B时,满足|AB|4的直线有两条(理)(2014浙江)设
7、直线x3ym0(m0)与双曲线1(a0,b0)的两条渐近线分别交于点A,B,若点P(m,0)满足|PA|PB|,则该双曲线的离心率是_答案解析联立渐近线与直线方程可解得A(,),B(,),则kAB,设AB的中点为E,由|PA|PB|,可知AB的中点E与点P两点连线的斜率为3,6,化简得4b2a2,所以e.8(2014温州十校联考)过双曲线1(a0,b0)的左焦点F作圆x2y2a2的两条切线,记切点分别为A、B,双曲线的左顶点为C,若ACB120,则双曲线的离心率e_.答案2解析连接OA,根据题意以及双曲线的几何性质,|FO|c,|OA|a,而ACB120,AOC60,又FA是圆O的切线,故OA
8、FA,在RtFAO中,容易得到|OF|2a,e2.9(文)(2015河南八校联考)已知双曲线1的右焦点为(3,0),则该双曲线的离心率等于_答案解析由条件知a259,a2,e.(理)(2014深圳调研)已知双曲线C:1(a0,b0)与椭圆1有相同的焦点,且双曲线C的渐近线方程为y2x,则双曲线C的方程为_答案x21解析易得椭圆的焦点为(,0),(,0),a21,b24,双曲线C的方程为x21.三、解答题10(文)设双曲线C:y21(a0)与直线l:xy1相交于两个不同的点A,B.(1)求双曲线C的离心率e的取值范围;(2)设直线l与y轴的交点为P,若,求a的值解析(1)将yx1代入双曲线y21
9、中得(1a2)x22a2x2a20由题设条件知,解得0a且a1,又双曲线的离心率e,0a且e.(2)设A(x1,y1),B(x2,y2),P(0,1),(x1,y11)(x2,y21)x1x2,x1、x2是方程的两根,且1a20,x2,x,消去x2得,a0,a.(理)设双曲线C:1(a0,b0)的离心率e2,经过双曲线的右焦点F且斜率为的直线交双曲线于A,B两点,若|AB|12,求此双曲线方程解析e2,c2a,又c2a2b2,b23a2,双曲线C的方程为1,直线AB:y(x2a)代入双曲线方程化简得,4x220ax29a20,设A(x1,y1),B(x2,y2),则x1x25a,x1x2a2,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 走向高考 【走向高考】2021届高三数学一轮基础巩固 第8章 第5节 双曲线含解析新人教B版 走向 高考 2021 届高三 数学 一轮 基础 巩固 双曲线 解析 新人
限制150内