2021-2022年收藏的精品资料高考数学:不等式恒成立、能成立、恰成立问题.doc
《2021-2022年收藏的精品资料高考数学:不等式恒成立、能成立、恰成立问题.doc》由会员分享,可在线阅读,更多相关《2021-2022年收藏的精品资料高考数学:不等式恒成立、能成立、恰成立问题.doc(9页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、不等式恒成立、能成立、恰成立问题一、不等式恒成立问题的处理方法1、转换求函数的最值:(1)若不等式在区间上恒成立,则等价于在区间上,的下界大于A(2)若不等式在区间上恒成立,则等价于在区间上,的上界小于A例1、设f(x)=x2-2ax+2,当x-1,+时,都有f(x)a恒成立,求a的取值范围。例2、已知对任意恒成立,试求实数的取值范围;例3、R上的函数既是奇函数,又是减函数,且当时,有恒成立,求实数m的取值范围.例4、已知函数在处取得极值,其中、为常数.(1)试确定、的值; (2)讨论函数的单调区间;(3)若对任意,不等式恒成立,求的取值范围。2、主参换位法例5、若不等式对恒成立,求实数a的取
2、值范围例6、若对于任意,不等式恒成立,求实数x的取值范围例7、已知函数,其中为实数若不等式对任意都成立,求实数的取值范围3、分离参数法(1) 将参数与变量分离,即化为(或)恒成立的形式;(2) 求在上的最大(或最小)值;(3) 解不等式(或) ,得的取值范围。适用题型:(1) 参数与变量能分离;(2) 函数的最值易求出。例8、当时,不等式恒成立,则的取值范围是 .例9、已知函数,其中(1)当满足什么条件时,取得极值?(2)已知,且在区间上单调递增,试用表示出的取值范围.4、数形结合例10 、若对任意,不等式恒成立,则实数的取值范围是_例11、当x(1,2)时,不等式恒成立,求a的取值范围。二、
3、不等式能成立问题的处理方法若在区间上存在实数使不等式成立,则等价于在区间上;若在区间上存在实数使不等式成立,则等价于在区间上的.例12、已知不等式在实数集上的解集不是空集,求实数的取值范围_ 例13、若关于的不等式的解集不是空集,则实数的取值范围是 例14、已知函数()存在单调递减区间,求的取值范围三、不等式恰好成立问题的处理方法例15、不等式的解集为则_例16、已知当的值域是,试求实数的值.例17、已知两函数f(x)=8x2+16x-k,g(x)=2x3+5x2+4x,其中k为实数。(1)对任意x-3,3,都有f(x)g(x)成立,求k的取值范围;(2)存在x-3,3,使f(x)g(x)成立
4、,求k的取值范围;(3)对任意x1、x2-3,3,都有f(x1)g(x2),求k的取值范围。不等式恒成立、能成立、恰成立问题专项练习1、若不等式对任意实数x恒成立,求实数m取值范围2、已知不等式对任意的恒成立,求实数k的取值范围3、设函数对于任意实数,恒成立,求的最大值。4、对于满足|p|2的所有实数p,求使不等式恒成立的x的取值范围。5、已知不等式恒成立。求实数的取值范围。6、对任意的,函数的值总是正数,求x的取值范围7、 若不等式在内恒成立,则实数m的取值范围 。8、不等式在内恒成立,求实数a的取值范围。9、不等式有解,求的取值范围。10、对于不等式,存在实数,使此不等式成立的实数的集合是
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021 2022 收藏 精品 资料 高考 数学 不等式 成立 问题
限制150内