2022年人教版八年级数学下册第十七章-勾股定理专题测评试题(含详解).docx
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《2022年人教版八年级数学下册第十七章-勾股定理专题测评试题(含详解).docx》由会员分享,可在线阅读,更多相关《2022年人教版八年级数学下册第十七章-勾股定理专题测评试题(含详解).docx(27页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、人教版八年级数学下册第十七章-勾股定理专题测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,高速公路上有两点A,B相距25km,C,D为两个乡镇,已知DA10km,CB15km,DAAB于点A,C
2、BAB于点B,现需要在AB上建一个高速收费站E,使得C,D两个乡镇到E站的距离相等,则BE的长为( )A10kmB15kmC20kmD25km2、下列条件中,能判断ABC是直角三角形的是( )Aa:b:c3:4:4Ba1,b,cCA:B:C3:4:5Da2:b2:c23:4:53、以下列各组数为边长,不能构成直角三角形的是( )A3,4,5B,C1.5,2,3D9,12,154、如图,圆柱形玻璃杯高为12cm、底面周长为18cm,在杯内离杯底4cm的点C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm与蜂蜜相对的点A处,则蚂蚁到达蜂蜜的最短距离为( )cmA15B20C18D305、下列
3、命题属于假命题的是( )A3,4,5是一组勾股数B内错角相等,两直线平行C三角形的内角和为180D9的平方根是36、如图,将长方形纸片ABCD沿AE折叠,使点D恰好落在BC边上点F处,若AB3,AD5,则EC的长为( )A1BCD7、我国古代数学家赵爽的“勾股圆方图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示),如果大正方形的面积是25,小正方形的面积是1,直角三角形的两直角边分别是a、b(ba),则(a+b)2的值为( )A24B25C49D138、满足下列条件的ABC不是直角三角形的是()ABC1,AC2,ABBCBC:AC:AB3:4:5DA:B:C3:4:
4、59、若以下列各组数值作为三角形的三边长,则不能围成直角三角形的是( )A4、6、8B3、4、5C5、12、13D1、3、10、如图,在RtABC中,CBA60,斜边AB10,分别以ABC的三边长为边在AB上方作正方形,S1,S2,S3,S4,S5分别表示对应阴影部分的面积,则S1+S2+S3+S4+S5()A50B50C100D100第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在ABC中,ABC97.5,P、Q两点在AC边上,PB2,BQ3,PQ,若点M、N分别在边AB、BC上,(1)_(2)当四边形PQNM的周长最小时,(MP+MN+NQ)2=_2、如图,
5、数轴上A表示数2,过数轴上表示1的点B作BCx轴,若BC2,以A为圆心,AC为半径作圆弧交数轴于点P,那么数轴上点P所表示的数是_3、填空:(1)如图,圆柱的侧面展开图是_,点B的位置应在长方形的边CD的_,点A到点B的最短距离为线段_的长度(2)AB_4、在RtABC中,C90,AC3,BC1,以AB为边做等腰直角三角形ABD,点D、C在直线AB两旁,则线段CD长是_5、杜老师要画一个三角形,画好后量得三边长分别为7cm,24cm和25cm,则这个三角形_(填“是”或“不是”)直角三角形三、解答题(5小题,每小题10分,共计50分)1、如图,在中,平分交于点,求CD的长.2、我边防战士在海拔
6、高度(即CD的长)为50米的小岛顶部D处执行任务,上午8时发现在海面上的A处有一艘船,此时测得该船的俯角为30,该船沿着AC方向航行一段时间后到达B处,又测得该船的俯角为45,求该船在这一段时间内的航程(计算结果保留根号)3、如图,在ABC中,CACB,ACB90,AB5,点D是边AB上的一个动点,连接CD,过C点在上方作CECD,且CECD,点P是DE的中点(1)如图,连接AP,判断线段AP与线段DE的数量关系并说明理由;(2)如图,连接CP并延长交AB边所在直线于点Q,若AQ2,求BD的长4、若实数的立方根为2,且实数,满足(1)求的值;(2)若,是ABC的三边,试判断三角形的形状5、已知
7、,如图,ACB和ECD都是等腰直角三角形,ACB=ECD=90,点D在AB边上(1)图中哪一对三角形全等?说明理由;(2)若BD=9,AD=12,求DE的长-参考答案-一、单选题1、A【分析】根据题意设出的长为,再由勾股定理列出方程求解即可【详解】解:设,则,由勾股定理得:在中,在中,由题意可知:,解得:,BE=10km故选A【点睛】本题考查正确运用勾股定理,善于观察题目的信息是解题以及学好数学的关键2、B【分析】根据勾股定理的逆定理,以及三角形的内角等于逐项判断即可【详解】,设,此时,故不能构成直角三角形,故不符合题意;,故能构成直角三角形,故符合题意,且,设,则有,所以,则,故不能构成直角
8、三角形,故不符合题意;,设,则,即,故不能构成直角三角形,故不符合题意;故选:B【点睛】本题考查了勾股定理的逆定理,和三角形的内角和等知识,能熟记勾股定理的逆定理内容和三角形内角和等于是解题关键3、C【分析】根据勾股定理的逆定理逐一判断即可【详解】解:32+4252,A可以;,B可以;1.52+2232,C不能;92+122152,D可以,故选:C【点睛】本题考查了勾股定理的逆定理,熟练掌握勾股定理的逆定理是解题的关键4、A【分析】把圆柱沿蚂蚁所在的高剪开并展开在一个平面内,得到一个矩形,作A点关于DF的对称点B,分别连接BD、BC,过点C作CEDH于点E,则BC就是蚂蚁到达蜂蜜的最短距离,根
9、据勾股定理即可求得BC的长【详解】把圆柱沿蚂蚁所在的高剪开并展开在一个平面内,得到一个矩形,作A点关于DF的对称点B,分别连接BD、BC,过点C作CEDH于点E,如图所示:则DB=AD=4cm,由题意及辅助线作法知,M与N分别为GH与DF的中点,且四边形CMHE为长方形,CE=MH=9cm,EH=CM=4cm,DE=DHEH=124=8cm,BE=DE+DB=8+4=12cm ,在RtBEC中,由勾股定理得:,即蚂蚁到达蜂蜜的最短距离为 15cm,故选;:A【点睛】本题考查了勾股定理,两点间线段最短,关键是把空间问题转化为平面问题解决,这是数学上一种重要的转化思想5、D【分析】利用勾股数的定义
10、、平行线的判定、三角形的内角和及平方根的定义分别判断后即可确定正确的选项【详解】解:A、3,4,5是一组勾股数,正确,是真命题,不符合题意;B、内错角相等,两直线平行,正确,是真命题,不符合题意;C、三角形的内角和为180,正确,是真命题,不符合题意;D、9的平方根是3,故原命题是假命题,符合题意故选:D【点睛】考查了命题与定理的知识,解题的关键是了解勾股数的定义、平行线的判定、三角形的内角和及平方根的定义,难度不大6、D【分析】由翻折可知:ADAF5DEEF,设ECx,则DEEF3x在RtECF中,利用勾股定理构建方程即可解决问题【详解】解:四边形ABCD是矩形,ADBC5,ABCD3,BB
11、CD90,由翻折可知:ADAF5,DEEF,设ECx,则DEEF3x在RtABF中,BF4,CFBCBF541,在RtEFC中,EF2CE2CF2,(3x)2x212,x,EC故选:D【点睛】本题考查了折叠的性质,矩形的性质,勾股定理,熟练掌握方程的思想方法是解题的关键7、C【分析】根据勾股定理,可得 ,再由四个全等的直角三角形的面积之和等于大正方形的面积减去小正方形的面积,可得 ,然后利用完全平方公式,即可求解【详解】解:根据题意得: ,四个全等的直角三角形的面积之和为 , ,即 , 故选:C【点睛】本题主要考查了勾股定理,完全平方公式的应用,勾股定理,完全平方公式是解题的关键8、D【分析】
12、根据勾股定理的逆定理可判定A、C,由三角形内角和可判定B、D,可得出答案【详解】A、当BC1,AC2,AB时,满足BC2+AB2=1+3=4=AC2,所以ABC为直角三角形;B、当A:B:C=1:2:3时,可设A=x,B=2x,C=3x,由三角形内角和定理可得x+2x+3x=180,解得x=30,所以A=30,B=60,C=90,所以ABC为直角三角形,C、当BC:AC:AB=3:4:5时,设BC=3x,AC=4x,AB=5x,满足BC2+AC2=AB2,所以ABC为直角三角形;D、当A:B:C=3:4:5时,可设A=3x,B=4x,C=5x,由三角形内角和定理可得3x+4x+5x=180,解
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 年人教版 八年 级数 下册 第十七 勾股定理 专题 测评 试题 详解
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内