《2022年北师大版八年级数学下册第四章因式分解专项训练试卷(名师精选).docx》由会员分享,可在线阅读,更多相关《2022年北师大版八年级数学下册第四章因式分解专项训练试卷(名师精选).docx(17页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、北师大版八年级数学下册第四章因式分解专项训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如果多项式x25x+c可以用十字相乘法因式分解,那么下列c的取值正确的是()A2B3C4D52、下列各式中,能用
2、平方差公式分解因式的是()Aa2b2Ba2+b2Ca2+(b)2Da3ab33、下列各式中,从左到右的变形是因式分解的是( )ABCD4、下列各组多项式中,没有公因式的是()Aaxby和by2axyB3x9xy和6y22yCx2y2和xyDa+b和a22ab+b25、下列由左到右的变形,是因式分解的是( )ABCD6、如图,长与宽分别为a、b的长方形,它的周长为14,面积为10,则a3b+2a2b2+ab3的值为()A2560B490C70D497、下列多项式中能用平方差公式分解因式的是( )ABCD8、把多项式x32x2+x分解因式结果正确的是( )Ax(x22x)Bx2(x2)Cx(x+1
3、)(x1)Dx(x1)29、下列因式分解正确的是( )Ax24x4x(x4)4B96(mn)(nm)2(3mn)2C4x22x1(2x1)2Dx4y4(x2y2)(x2y2)10、因式分解m2-m-6正确的是( )A(m+2)(m-3)B(m-2)(m+3)C(m-2)(m-3)D(m+2)(m+3)第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、将4a28ab+4b2因式分解后的结果为_2、分解因式_3、(_)(_);(_)(_);(_)(_);(_)(_);(_)(_);(_)(_)4、因式分解:_5、在ABC中,C90,ACBC,D是AC上点,AD2CD,连接BD
4、,过点D作DEBD与AB的垂线交于点E,DE交AB于点F,若,则线段BC_三、解答题(5小题,每小题10分,共计50分)1、分解因式:(1)2a38ab2;(2)(a2+1)24a22、分解因式:(1)(2)(3)3、探究:如何把多项式x2+8x+15因式分解? (1)观察:上式能否可直接利用完全平方公式进行因式分解? 答:_; (2)(阅读与理解):由多项式乘法,我们知道(x+a)(x+b)=x2+(a+b)x+ab,将该式从右到左地使用,即可对形如x2+(a+b)x+ab的多项式进行因式分解,即:x2+(a+b)x+ab=(x+a)(x+b)此类多项式x2+(a+b)x+ab的特征是二次项
5、系数为1,常数项为两数之积,一次项系数为这两数之和猜想并填空:x2+8x+15=x2+(_)+(_)x+(_)(_)=(x+_)(x+_)(3)上面多项式x2+8x+15的因式分解是否符合题意,我们需要验证请写出验证过程(4)请运用上述方法将下列多项式进行因式分解:x2-x-124、因式分解(1)(2)(x1)(x3)85、(1)运用乘法公式计算:;(2)分解因式:-参考答案-一、单选题1、C【分析】根据十字相乘法进行因式分解的方法,对选项逐个判断即可【详解】解:A、,不能用十字相乘法进行因式分解,不符合题意;B、,不能用十字相乘法进行因式分解,不符合题意;C、,能用十字相乘法进行因式分解,符
6、合题意;D、,不能用十字相乘法进行因式分解,不符合题意;故选C【点睛】此题考查了十字相乘法进行因式分解,解题的关键是掌握十字相乘法进行因式分解2、B【分析】能用平方差公式分解因式的式子必须是两项是平方项,符号为异号【详解】解:A、两项的符号相同,不能用平方差公式分解因式;故此选项错误;B、,能用平方差公式分解因式,故此选项正确;C、两项的符号相同,不能用平方差公式分解因式,故此选项错误;D提公因式后不是平方差形式,故不能用平方差公式因式分解,故此选项错误故选B【点睛】本题考查了平方差公式分解因式,熟记平方差公式结构两项式,异号,平方项(或变性后具备平方项)是解题的关键3、C【分析】根据因式分解
7、的定义判断即可.【详解】解:因式分解即把一个多项式化成几个整式的积的形式.A. ,不是几个整式的积的形式,A选项不是因式分解;B. ,不是几个整式的积的形式,B选项不是因式分解C. ,符合因式分解的定义,C是因式分解. D. ,不是几个整式的积的形式,D选项不是因式分解;故选C【点睛】本题考查了因式分解的定义,把一个多项式化成几个整式的积的形式的变形叫因式分解,等号的左边是一个多项式,右边是几个整式的积,正确理解因式分解的定义是解题的关键.4、D【分析】直接利用公因式的确定方法:定系数,即确定各项系数的最大公约数;定字母,即确定各项的相同字母因式(或相同多项式因式);定指数,即各项相同字母因式
8、(或相同多项式因式)的指数的最低次幂,进而得出答案【详解】解:A、by2axyy(axby),故两多项式的公因式为:axby,故此选项不合题意;B、3x9xy3x(13y)和6y22y2y(13y),故两多项式的公因式为:13y,故此选项不合题意;C、x2y2(xy)(xy)和xy,故两多项式的公因式为:xy,故此选项不合题意;D、ab和a22abb2(ab)2,故两多项式没有公因式,故此选项符合题意;故选:D【点睛】此题主要考查了公因式,掌握确定公因式的方法是解题关键5、A【分析】根据因式分解的定义,对各选项作出判断,即可得出正确答案【详解】解:A、,是因式分解,故此选项符合题意;B、,原式
9、分解错误,故本选项不符合题意;C、右边不是整式的积的形式,故本选项不符合题意;D、原式是整式的乘法运算,不是因式分解,故本选项不符合题意;故选:A【点睛】本题考查了分解因式的定义解题的关键是掌握分解因式的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式6、B【分析】利用面积公式得到ab10,由周长公式得到a+b7,所以将原式因式分解得出ab(a+b)2将其代入求值即可【详解】解:长与宽分别为a、b的长方形,它的周长为14,面积为10,ab10,a+b7,a3b+2a2b2+ab3ab(a+b)21072490故选:B【点睛】本题主要考查了因式分解和代数
10、式求值,准确计算是解题的关键7、A【分析】利用平方差公式逐项进行判断,即可求解【详解】解:A、,能用平方差公式分解因式,故本选项符合题意;B、 ,不能用平方差公式分解因式,故本选项不符合题意 ;C、 ,不能用平方差公式分解因式,故本选项不符合题意 ;D、 ,不能用平方差公式分解因式,故本选项不符合题意 ;故选:A【点睛】本题主要考查了用平方差公式因式分解,熟练掌握平方差公式 是解题的关键8、D【分析】先提取公因式,再按照完全平方公式分解即可得到答案.【详解】解:x32x2+x 故选D【点睛】本题考查的是综合利用提公因式与公式法分解因式,掌握“利用完全平方公式分解因式”是解本题的关键.9、B【分
11、析】利用公式法进行因式分解判断即可【详解】解:A、,故A错误,B、96(mn)(nm)2(3mn)2,故B正确,C、4x22x1,无法因式分解,故C错误,D、,因式分解不彻底,故D错误,故选:B【点睛】本题主要是考查了利用公式法进行因式分解,一定要熟练掌握完全平方公式和平方差公式的形式,另外因式分解一定要彻底10、A【分析】先把分解 再利用十字乘法分解因式,再逐一分析各选项,从而可得答案.【详解】解: m2-m-6故选A【点睛】本题考查的是利用十字乘法分解因式,掌握“利用十字乘法分解因式”是解题的关键.二、填空题1、【分析】先提取公因式4,再利用完全平方式即可求出结果【详解】故答案为:【点睛】
12、本题考查因式分解掌握提公因式和公式法进行因式分解是解答本题的关键2、【分析】把原式化为,再利用完全平方公式分解因式即可.【详解】解: 故答案为:【点睛】本题考查的是利用完全平方公式分解因式,掌握“”是解本题的关键.3、;【分析】利用十字相乘法进行因式分解即可得【详解】解:;故答案为:;【点睛】本题考查了利用十字相乘法进行因式分解,熟练掌握十字相乘法是解题关键二次三项式,若存在 ,则4、【分析】利用十字相乘法分解因式即可得【详解】解:因为,且是的一次项的系数,所以,故答案为:【点睛】本题考查了因式分解,熟练掌握十字相乘法是解题关键5、【分析】过点作的延长线于点,连接,先证明,设,设,则,勾股定理
13、分别求得,在与中,根据,列出关于的等式,求得,进而根据,求得的值,即可求得的长【详解】如图,过点作的延长线于点,连接,设,则,设,在中,在中,在中,在中,在与中, 即,解得或(舍去),解得(负值舍去),故答案为:【点睛】本题考查了勾股定理,等腰三角形的性质与判定,掌握勾股定理是解题的关键三、解答题1、(1);(2)【分析】(1)综合利用提公因式法和平方差公式分解因式即可得;(2)综合利用平方差公式()和完全平方公式()分解因式即可得【详解】解:(1)原式,;(2)原式,【点睛】本题考查了因式分解,熟练掌握乘法公式是解题关键2、(1);(2);(3)【分析】(1)先提取公因式再利用公式法法因式分
14、解即可;(2)先提取公因式再利用公式法因式分解即可;(3)先提取公因式再利用公式法因式分解即可;【详解】解:(1)原式=(2)原式=(3)原式=【点睛】本题考查了因式分解,利用适当的方法进行因式分解是解题的关键3、(1)不能;(2)3;5;3;5;3;5;(3)x2+8x+15;(4)(x-4)(x+3)【分析】(1)根据完全平方公式的结构特征进行判断即可;(2)将x2+8x+15=x2+(3+5)x+(35)即可得出答案;(3)根据整式乘法计算(x+3)(x+5)的结果即可;(4)将x2+3+(-4)x+3(-4)即可得出答案【详解】解:(1)因为x2+8x+16=(x+4)2,所以x2+8
15、x+15不是完全平方公式,故答案为:不能;(2)x2+8x+15=x2+(3+5)x+(35)x2+8x+15=x2+(3+5)x+(35)=(x+3)(x+5),故答案为:3,5,3,5,3,5;(3)(x+3)(x+5)=x2+5x+3x+15=x2+8x+15,x2+8x+15=(x+3)(x+5)因此多项式x2+8x+15的因式分解是符合题意的;(4)x2-x-12=x2+3+(-4)x+3(-4)=(x+3)(x-4)【点睛】本题考查了十字相乘法分解因式,掌握x2+(a+b)x+ab=(x+a)(x+b)的结构特征是正确应用的前提4、(1)x2(a2-2y)2;(2)(x-5)(x+1)【分析】(1)先提取x2,再根据完全平方公式即可求解;(2)先化简,再根据十字相乘法即可求解【详解】解:(1)=x2(a4-4a2y+4y2)=x2(a2-2y)2(2)(x1)(x3)8=x2-4x+3-8=x2-4x-5=(x-5)(x+1)【点睛】此题主要考查因式分解,解题的关键是熟知因式分解的方法5、(1);(2)【分析】(1)把(3y-2)看作一个整体,然后利用平方差公式及完全平方公式进行求解即可;(2)先部分提公因式,然后再利用完全平方公式进行因式分解即可【详解】解:(1)=;(2)=【点睛】本题主要考查整式的混合运算及因式分解,熟练掌握乘法公式是解题的关键
限制150内