2021-2022学年度北师大版八年级数学下册第六章平行四边形定向练习练习题(无超纲).docx
《2021-2022学年度北师大版八年级数学下册第六章平行四边形定向练习练习题(无超纲).docx》由会员分享,可在线阅读,更多相关《2021-2022学年度北师大版八年级数学下册第六章平行四边形定向练习练习题(无超纲).docx(25页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、北师大版八年级数学下册第六章平行四边形定向练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,小明从点A出发沿直线前进10m到达点B,向左转,后又沿直线前进10m到达点C,再向左转30后沿直线前进1
2、0m到达点照这样走下去,小明第一次回到出发点A,一共走了( )米A80B100C120D1402、如图,四边形ABCD中,ADBC,点P是对角线BD的中点,E、F分别是AB、CD的中点,若EPF130,则PEF的度数为()A25B30C35D503、某多边形的内角和比外角和多180度,这个多边形的边数( )A3B4C5D64、如图,在四边形中,ABCD,添加下列一个条件后,一定能判定四边形是平行四边形的是( )ABCD5、一个多边形每个外角都等于36,则这个多边形是几边形( )A7B8C9D106、在ABCD中,AC=24,BD=38,AB=m,则m的取值范围是( )A24m39B14m62C
3、7m31D7m127、如图,在ABC中,ABC90,AC18,BC14,D,E分别是AB,AC的中点,连接DE,BE,点M在CB的延长线上,连接DM,若MDBA,则四边形DMBE的周长为( )A16B24C32D408、在ABC中,AD是角平分线,点E、F分别是线段AC、CD的中点,若ABD、EFC的面积分别为21、7,则的值为( )ABCD9、正多边形的一个内角等于144,则该多边形是( )A正八边形B正九边形C正十边形D正十一边形10、多边形每一个内角都等于150,则从该多边形一个顶点出发,可引出对角线的条数为( )A9条B8条C7条D6条第卷(非选择题 70分)二、填空题(5小题,每小题
4、4分,共计20分)1、如图,在 中, 于点 , 于点 若 , ,且 的周长为40,则 的面积为_2、一个多边形的内角和比它的外角和的2倍还多180,则它是_边形3、如图,在中,、分别是、的中点,连结若,则_4、七边形内角和的度数是_5、如图,在ABC中,D,E分别是边AB,AC的中点,B50现将ADE沿DE折叠点A落在三角形所在平面内的点为A1,则BDA1的度数为 _三、解答题(5小题,每小题10分,共计50分)1、如图,在平行四边形ABCD中,点E、F分别是BC、AD的中点(1)求证:;(2)当时,在不添加辅助线的情况下,直接写出图中等于的2倍的所有角2、阅读材料,回答下列问题:(材料提出)
5、“八字型”是数学几何的常用模型,通常由一组对顶角所在的两个三角形构成(探索研究)探索一:如图1,在八字形中,探索A、B、C、D之间的数量关系为 ;探索二:如图2,若B36,D14,求P的度数为 ;探索三:如图3,CP、AG分别平分BCE、FAD,AG反向延长线交CP于点P,则P、B、D之间的数量关系为 (模型应用)应用一:如图4,在四边形MNCB中,设M,N,+180,四边形的内角MBC与外角NCD的角平分线BP,CP相交于点P则A (用含有和的代数式表示),P (用含有和的代数式表示)应用二:如图5,在四边形MNCB中,设M,N,+180,四边形的内角MBC与外角NCD的角平分线所在的直线相
6、交于点P,P (用含有和的代数式表示)(拓展延伸)拓展一:如图6,若设Cx,By,CAPCAB,CDPCDB,试问P与C、B之间的数量关系为 (用x、y表示P)拓展二:如图7,AP平分BAD,CP平分BCD的邻补角BCE,猜想P与B、D的关系,直接写出结论 3、如图,四边形ABCD是平行四边形,BAC90(1)尺规作图:在BC上截取CE,使CECD,连接DE与AC交于点F,过点F作线段AD的垂线交AD于点M;(不写作法,保留作图痕迹)(2)在(1)的条件下,猜想线段FM和CF的数量关系,并证明你的结论4、已知,在中,E是AD边的中点,连接BE(1)如图,若BC=2,求AE的长;(2)如图,延长
7、BE交CD的延长线于点F,求证:FD=AB5、如图,在ABC中,AD是BC边上的中线,ADC的周长比ABD的周长少6cm,AB与AC的和为18cm,求AC的长-参考答案-一、单选题1、C【分析】由小明第一次回到出发点A,则小明走过的路程刚好是一个多边形的周长,由多边形的外角和为,每次的转向的角度的大小刚好是多边形的一个外角,则先求解多边形的边数,从而可得答案.【详解】解:由 可得:小明第一次回到出发点A,一个要走米,故选C【点睛】本题考查的是多边形的外角和的应用,掌握“由多边形的外角和为得到一共要走12个10米”是解本题的关键.2、A【分析】根据三角形的中位线定理,可得 ,从而PE=PF,则有
8、PEF=PFE,再根据三角形的内角和定理,即可求解【详解】解:点P是对角线BD的中点,E、F分别是AB、CD的中点, ,ADBC,PE=PF,PEF=PFE,EPF130, 故选:A【点睛】本题主要考查了三角形的中位线定理,等腰三角形的性质,三角形的内角和定理,熟练掌握三角形的中位线定理是解题的关键3、C【分析】要结合多边形的内角和公式与外角和的关系来寻求等量关系,构建方程即可求解【详解】解:设这个多边形是n边形则180(n-2)=180+360,解得n=5,答:此多边形的边数是5故选:C【点睛】本题考查多边形的内角和与外角和、方程的思想关键是记住内角和的公式与外角和的特征4、C【分析】由平行
9、线的性质得,再由,得,证出,即可得出结论【详解】解:一定能判定四边形是平行四边形的是,理由如下:,又,四边形是平行四边形,故选:C【点睛】本题考查了平行四边形的判定,解题的关键是熟练掌握平行四边形的判定,证明出5、D【分析】根据任何多边形的外角和都是360度,利用360除以外角的度数就可以求出外角和中外角的个数,即多边形的边数【详解】解:36036=10,这个多边形的边数是10故选D【点睛】本题考查了多边形内角与外角,外角和的大小与多边形的边数无关,熟练掌握多边形内角与外角是解题关键6、C【分析】作出平行四边形,根据平行四边形的性质可得,然后在中,利用三角形三边的关系即可确定m的取值范围【详解
10、】解:如图所示:四边形ABCD为平行四边形,在中,即,故选:C【点睛】题目主要考查平行四边形的性质及三角形三边的关系,熟练掌握平行四边形的性质及三角形三边关系是解题关键7、C【分析】由中点的定义可得AE=CE,AD=BD,根据三角形中位线的性质可得DE/BC,DE=BC,根据平行线的性质可得ADE=ABC=90,利用ASA可证明MBDEDA,可得MD=AE,DE=MB,即可证明四边形DMBE是平行四边形,可得MD=BE,进而可得四边形DMBE的周长为2DE+2MD=BC+AC,即可得答案【详解】D,E分别是AB,AC的中点,AE=CE,AD=BD,DE为ABC的中位线,DE/BC,DE=BC,
11、ABC90,ADE=ABC=90,在MBD和EDA中,MBDEDA,MD=AE,DE=MB,DE/MB,四边形DMBE是平行四边形,MD=BE,AC18,BC14,四边形DMBE的周长=2DE+2MD=BC+AC=18+14=32故选:C【点睛】本题考查全等三角形的判定与性质、三角形中位线的性质及平行四边形的判定与性质,三角形中位线平行于第三边且等于第三边的一半;有一组对边平行且相等的四边形是平行四边形;熟练掌握相关性质及判定定理是解题关键8、B【分析】过点A作ABC的高,设为x,过点E作EFC的高为,可求出,再由点E、F分别是线段AC、CD的中点,可得出,进而求出,再利用角平分线的性质可得出
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021 2022 学年度 北师大 八年 级数 下册 第六 平行四边形 定向 练习 练习题 无超纲
限制150内