2021-2022学年北师大版九年级数学下册第三章-圆单元测试试题(含详细解析).docx
《2021-2022学年北师大版九年级数学下册第三章-圆单元测试试题(含详细解析).docx》由会员分享,可在线阅读,更多相关《2021-2022学年北师大版九年级数学下册第三章-圆单元测试试题(含详细解析).docx(27页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、北师大版九年级数学下册第三章 圆单元测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,中,则等于( )ABCD2、如图,在圆内接五边形中,则的度数为( )ABCD3、如图,AB为的直径,C、D为上
2、两点,则AB的长度为( )A6B3C9D124、如图,点,在上,是等边三角形,则的大小为( )A60B40C30D205、如图,有一个弓形的暗礁区,弓形所含的圆周角,船在航行时,为保证不进入暗礁区,则船到两个灯塔A,B的张角应满足的条件是( )ABCD6、下列说法正确的是( )A等弧所对的圆周角相等B平分弦的直径垂直于弦C相等的圆心角所对的弧相等D过弦的中点的直线必过圆心7、如图,中,点是边上一动点,连接,以为直径的圆交于点若长为4,则线段长的最小值为( )ABCD8、已知O的半径为5,若点P在O内,则OP的长可以是()A4B5C6D79、如图,ABC内接于O,BAC30,BC6,则O的直径等
3、于()A10B6C6D1210、小明设计了如图所示的树型图案,它是由4个正方形、8个等边三角形和5个扇形组成,其中正方形的边长、等边三角形的边长和扇形的半径均为3,则图中扇形的弧长总和为()A8BCD12第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,正六边形的边长为2,以为圆心,的长为半径画弧,得,连接,则图中阴影部分的面积为_2、已知某扇形的半径为5cm,圆心角为120,那么这个扇形的弧长为 _cm3、如图1所示的铝合金窗帘轨道可以直接弯曲制作成弧形若制作一个圆心角为160的圆弧形窗帘轨道(如图2)需用此材料mm,则此圆弧所在圆的半径为_mm4、在中,D,E分
4、别是,的中点,若等腰绕点A逆时针旋转,得到等腰,记直线与的交点为P,则点P到所在直线的距离的最大值为_5、如图,五边形是的内接正五边形,则的度数是_三、解答题(5小题,每小题10分,共计50分)1、已知:如图,中,以为直径的交于点,于点(1)求证:是的切线;(2)若,求的值2、如图,AB为O的切线,B为切点,过点B作BCOA,垂足为点E,交O于点C,连接CO并延长CO与AB的延长线交于点D,连接AC(1)求证:AC为O的切线;(2)若O半径为2,OD4求线段AD的长3、已知:如图,ABC为锐角三角形,ABAC 求作:一点P,使得APCBAC作法:以点A为圆心, AB长为半径画圆;以点B为圆心,
5、BC长为半径画弧,交A于点C,D两点;连接DA并延长交A于点P点P即为所求(1)使用直尺和圆规,依作法补全图形(保留作图痕迹);(2)完成下面的证明证明:连接PC,BDABAC,点C在A上BCBD,_BACCAD 点D,P在A上,CPDCAD(_) (填推理的依据)APCBAC4、如图,在ABCD中,D60,对角线ACBC,O经过点A、点B,与AC交于点M,连接AO并延长与O交于点F,与CB的延长线交于点E,ABEB(1)求证:EC是O的切线;(2)若AD2,求O的半径5、如图,在ABC中,C90,点O为边BC上一点以O为圆心,OC为半径的O与边AB相切于点D(1)尺规作图:画出O,并标出点D
6、(不写作法,保留作图痕迹);(2)在(1)所作的图中,连接CD,若CDBD,且AC6求劣弧的长-参考答案-一、单选题1、C【分析】由题意直接根据圆周角定理进行分析即可得出答案.【详解】解:ABC和AOC是弧AC所对的圆周角和圆心角,ABC=AOC=.故选:C.【点睛】本题考查圆周角定理,注意掌握同弧(等弧)所对的圆周角是圆心角的一半2、B【分析】先利用多边的内角和得到,可计算出,然后根据圆内接四边形的性质求出的度数即可.【详解】解:五边形的内角和为,四边形为的内接四边形,.故选:B.【点睛】本题主要考查了多边形的内角和与圆内接四边形的性质,掌握圆内接四边形的性质是解答本题的关键.3、A【分析】
7、连接AC,利用直角三角形30的性质求解即可【详解】解:如图,连接AC AB是直径, ACB=90, CAB=CDB=30, AB=2BC=6, 故选:A【点睛】本题考查圆周角定理,含30角的直角三角形的性质,解题的关键是学会添加常用辅助线,构造直角三角形解决问题4、C【分析】由为等边三角形,得:AOB=60,再根据圆周角定理,即可求解【详解】解:为等边三角形,AOB=60,=AOB =60=30故选C【点睛】本题主要考查圆周角定理,掌握同弧所对的圆周角是圆心角的一半是解题的关键5、D【分析】本题利用了三角形外角与内角的关系和圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所
8、对的圆心角的一半【详解】如图,AS交圆于点E,连接EB,由圆周角定理知,AEB=C=50,而AEB是SEB的一个外角,由AEBS,即当S50时船不进入暗礁区所以,两个灯塔的张角ASB应满足的条件是ASB50cosASBcos50,故选:D【点睛】本题考查三角形的外角的性质,圆周角定理等知识,解题的关键是理解题意,灵活运用所学知识解决问题6、A【分析】根据圆周角定理,垂径定理的推论,圆心角、弧、弦的关系,对称轴的定义逐项排查即可【详解】解:A.同弧或等弧所对的圆周角相等,所以A选项正确;B.平分弦(非直径)的直径垂直于弦,并且平分弦所对的弧,所以B选项错误;C、在同圆和等圆中,相等的圆心角所对的
9、弧相等,所对的弦相等,所以C选项错误;D.圆是轴对称图形,任何一条直径所在的直线都是它的对称轴,所以D选项错误.故选A.【点睛】本题主要考查了圆心角、弧、弦的关系,轴对称图形,垂径定理,圆周角定理等知识点灵活运用相关知识成为解答本题的关键7、D【分析】如图,连接 由为直径,证明在以的中点为圆心,为直径的上运动,连接 交于点 则此时最小,再利用锐角的正弦与勾股定理分别求解,即可得到答案.【详解】解:如图,连接 由为直径, 在以的中点为圆心,为直径的上运动,连接 交于点 则此时最小, , 故选D【点睛】本题考查的是勾股定理的应用,圆外一点与圆的最短距离的理解,锐角的正弦的应用,掌握“圆外一点与圆的
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021 2022 学年 北师大 九年级 数学 下册 第三 单元测试 试题 详细 解析
限制150内