2022年强化训练沪科版九年级数学下册第24章圆综合练习试卷.docx
《2022年强化训练沪科版九年级数学下册第24章圆综合练习试卷.docx》由会员分享,可在线阅读,更多相关《2022年强化训练沪科版九年级数学下册第24章圆综合练习试卷.docx(33页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、沪科版九年级数学下册第24章圆综合练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图是一个含有3个正方形的相框,其中BCDDEF90,AB2,CD3,EF5,将它镶嵌在一个圆形的金属框上,使A,G,
2、 H三点刚好在金属框上,则该金属框的半径是( )ABCD2、下列图形中,是中心对称图形的是( )ABCD3、下列图形中,是中心对称图形也是轴对称图形的是()ABCD4、如图,为的直径,为外一点,过作的切线,切点为,连接交于,点在右侧的半圆周上运动(不与,重合),则的大小是( )A19B38C52D765、点P(3,1)关于原点对称的点的坐标是( )A(3,1)B(3,1)C(3,1)D(3,1)6、如图,圆形螺帽的内接正六边形的面积为24cm2,则圆形螺帽的半径是()A1cmB2cmC2cmD4cm7、如图,是的直径,、是上的两点,若,则( )A15B20C25D308、如图,四边形内接于,如
3、果它的一个外角,那么的度数为( )ABCD9、往直径为78cm的圆柱形容器内装入一些水以后,截面如图所示,若水面宽,则水的最大深度为( )A36 cmB27 cmC24 cmD15 cm10、已知O的半径为4,则点A在( )AO内BO上CO外D无法确定第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,正三角形ABC的边长为,D、E、F 分别为BC,CA,AB的中点,以A,B,C三点为圆心,长为半径作圆,图中阴影部分面积为_2、为了落实“双减”政策,朝阳区一些学校在课后服务时段开设了与冬奥会项目冰壶有关的选修课如图,在冰壶比赛场地的一端画有一些同心圆作为营垒,其中有两
4、个圆的半径分别约为60cm和180 cm,小明掷出一球恰好沿着小圆的切线滑行出界,则该球在大圆内滑行的路径MN的长度为_cm3、如图,将RtABC的斜边AB与量角器的直径恰好重合,B点与零刻度线的一端重合,ABC38,射线CD绕点C转动,与量角器外沿交于点D,若射线CD将ABC分割出以BC为边的等腰三角形,则点D在量角器上对应的度数是 _4、已知A的半径为5,圆心A(4,3),坐标原点O与A的位置关系是_5、如图,在平面直角坐标系中,一次函数y2x4的图像与x轴、y轴分别交于点A、B,将直线AB绕点B顺时针旋转45,交x轴于点C,则直线BC的函数表达式为_三、解答题(5小题,每小题10分,共计
5、50分)1、如图,在ABC是O的内接三角形,B45,连接OC,过点A作ADOC,交BC的延长线于D(1)求证:AD是O的切线;(2)若O的半径为2,OCB75,求ABC边AB的长2、如图,AB是的直径,CD是的一条弦,且于点E(1)求证:;(2)若,求的半径3、如图,AB为O的弦,OCAB于点M,交O于点C若O的半径为10,OM:MC3:2,求AB的长4、定理:一条弧所对的圆周角等于这条弧所对的圆心角的一半如图1,AO已知:如图2,AC是O的一条弦,点D在O上(与A、C不重合),联结DE交射线AO于点E,联结OD,O的半径为5,tanOAC(1)求弦AC的长(2)当点E在线段OA上时,若DOE
6、与AEC相似,求DCA的正切值(3)当OE1时,求点A与点D之间的距离(直接写出答案)5、在中,过点A作BC的垂线AD,垂足为D,E为线段DC上一动点(不与点C重合),连接AE,以点A为中心,将线段AE逆时针旋转90得到线段AF,连接BF,与直线AD交于点G(1)如图,当点E在线段CD上时,依题意补全图形,并直接写出BC与CF的位置关系;求证:点G为BF的中点(2)直接写出AE,BE,AG之间的数量关系-参考答案-一、单选题1、A【分析】如图,记过A,G, H三点的圆为则是,的垂直平分线的交点, 记的交点为 的交点为 延长交于为的垂直平分线,结合正方形的性质可得:再设利用勾股定理建立方程,再解
7、方程即可得到答案.【详解】解:如图,记过A,G, H三点的圆为则是,的垂直平分线的交点, 记的交点为 的交点为 延长交于为的垂直平分线,结合正方形的性质可得: 四边形为正方形,则 设 而AB2,CD3,EF5,结合正方形的性质可得:而 又 而 解得: 故选A【点睛】本题考查的是正方形的性质,三角形外接圆圆心的确定,圆的基本性质,勾股定理的应用,二次根式的化简,确定过A,G, H三点的圆的圆心是解本题的关键.2、C【分析】根据中心对称图形的概念:一个平面图形绕某一点旋转180,如果旋转后的图形能够和原图形重合,那么这个图形叫做中心对称图形,这个点就是对称中心. 根据中心对称图形的概念对各选项进行
8、一一分析判定即可求解【详解】A、不是中心对称图形,不符合题意;B、不是中心对称图形,不符合题意;C、是中心对称图形,符合题意;D、不是中心对称图形,不符合题意故选:C【点睛】本题考查了中心对称图形,掌握好中心对称图形,中心对称图形是要寻找对称中心,旋转180度后能够与原来的图形重合3、C【分析】根据中心对称图形的定义旋转180后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出【详解】解:A、不是轴对称图形,是中心对称图形,故A选项不符合题意;B、是轴对称图形,不是中心对称图形,故B选项不符合题意;C、既是轴对称图形,又是中心对称图形,故C选项符合题意;D、是轴对称图形,但不
9、是中心对称图形,故D选项不符合题意故选:C【点睛】本题考查中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180后与原图重合4、B【分析】连接 由为的直径,求解 结合为的切线,求解 再利用圆周角定理可得答案.【详解】解:连接 为的直径, 为的切线, 故选B【点睛】本题考查的是三角形的内角和定理,直径所对的圆周角是直角,圆周角定理,切线的性质定理,熟练运用以上知识逐一求解相关联的角的大小是解本题的关键.5、C【分析】据平面直角坐标系中任意一点P(x,y),关于原点的对称点是(x,
10、y),然后直接作答即可【详解】解:根据中心对称的性质,可知:点P(3,1)关于原点O中心对称的点的坐标为(3,1)故选:C【点睛】本题考查关于原点对称的点坐标的关系,是需要熟记的基本问题,记忆方法可以结合平面直角坐标系的图形6、D【分析】根据圆内接正六边形的性质可得AOB是正三角形,由面积公式可求出半径【详解】解:如图,由圆内接正六边形的性质可得AOB是正三角形,过作于 设半径为r,即OA=OB=AB=r, OM=OAsinOAB=, 圆O的内接正六边形的面积为(cm2), AOB的面积为(cm2), 即, , 解得r=4, 故选:D【点睛】本题考查正多边形和圆,作边心距转化为直角三角形的问题
11、是解决问题的关键7、C【分析】根据圆周角定理得到BDC的度数,再根据直径所对圆周角是直角,即可得到结论【详解】解:BOC=130,BDC=BOC=65,AB是O的直径,ADB=90,ADC=90-65=25,故选:C【点睛】本题考查了圆周角定理,熟练掌握圆周角定理是解题的关键8、D【分析】由平角的性质得出BCD=116,再由内接四边形对角互补得出A=64,再由圆周角定理即可求得BOD=2A=128【详解】四边形内接于又故选:D【点睛】本题考查了圆内接四边形的性质、圆周角定理,圆内接四边形的对角互补,并且任何一个外角都等于它的内对角;在同圆或等圆中,一条弧所对的圆周角等于它所对的圆心角的一半9、
12、C【分析】连接,过点作于点,交于点,先由垂径定理求出的长,再根据勾股定理求出的长,进而得出的长即可【详解】解:连接,过点作于点,交于点,如图所示:则,的直径为,在中,即水的最大深度为,故选:C【点睛】本题考查了垂径定理、勾股定理等知识,解题的关键是根据题意作出辅助线,构造出直角三角形是解答此题的关键10、C【分析】根据O的半径r=4,且点A到圆心O的距离d=5知dr,据此可得答案【详解】解:O的半径r=4,且点A到圆心O的距离d=5,dr,点A在O外,故选:C【点睛】本题主要考查点与圆的位置关系,点与圆的位置关系有3种设O的半径为r,点P到圆心的距离OP=d,则有:点P在圆外dr;点P在圆上d
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 强化 训练 沪科版 九年级 数学 下册 24 综合 练习 试卷
限制150内