2021-2022学年浙教版初中数学七年级下册第四章因式分解章节测评试题(含答案解析).docx
《2021-2022学年浙教版初中数学七年级下册第四章因式分解章节测评试题(含答案解析).docx》由会员分享,可在线阅读,更多相关《2021-2022学年浙教版初中数学七年级下册第四章因式分解章节测评试题(含答案解析).docx(18页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、初中数学七年级下册第四章因式分解章节测评(2021-2022学年 考试时间:90分钟,总分100分)班级:_ 姓名:_ 总分:_题号一二三得分一、单选题(15小题,每小题3分,共计45分)1、下列各式变形中,是因式分解的是( )A.B.C.D.2、多项式的各项的公因式是( )A.B.C.D.3、已知,则的值为( )A.0和1B.0和2C.0和-1D.0或14、下面从左到右的变形中,因式分解正确的是()A.2x24xy2x(x+2y)B.x2+9(x+3)2C.x22x1(x1)2D.(x+2)(x2)x245、下列各式由左到右的变形中,属于因式分解的是()A.a2abac=a(a+b+c )B
2、.x2+x+1=(x+1)2xC.(x+2)(x1)=x2+x2D.a2+b2=(a+b)22ab6、把多项式a39a分解因式,结果正确的是()A.a(a29)B.(a+3)(a3)C.a(9a2)D.a(a+3)(a3)7、下列等式中,从左往右的变形为因式分解的是()A.a2a1a(a1)B.(ab)(a+b)a2b2C.m2m1m(m1)1D.m(ab)+n(ba)(mn)(ab)8、把多项式x2+ax+b分解因式,得(x+3)(x4),则a,b的值分别是()A.a1,b12B.a1,b12C.a1,b12D.a1,b129、已知,则的值是( )A.6B.6C.1D.110、下列式子的变形
3、是因式分解的是( )A.B.C.D.11、下列从左边到右边的变形,属于因式分解的是( )A.B.C.D.12、已知下列多项式:;.其中,能用完全平方公式进行因式分解的有( )A.B.C.D.13、下列各式中不能用平方差公式分解的是( )A.B.C.D.14、把多项式x39x分解因式,正确的结果是( )A.x(x29)B.x(x3)(x3)C.x(x3)2D.x(3x)(3x)15、下面的多项式中,能因式分解的是()A.2m2B.m2+n2C.m2nD.m2n+1二、填空题(10小题,每小题4分,共计40分)1、已知,则_2、分解因式_3、分解因式:_4、分解因式:_5、因式分解:2a2-4a-
4、6=_6、分解因式:2x3+12x2y+18xy2_7、分解因式:x2y6xy9y_8、若a+b2,ab3,则代数式a3b+2a2b2+ab3的值为_9、下列多项式:;,它们的公因式是_10、若xz2,zy1,则x22xyy2_三、解答题(3小题,每小题5分,共计15分)1、把下列多项式因式分解:(1)n2(n1)n(1n);(2)4x34x;(3)16x48x2y2+y4;(4)(x1)2+2(x5)2、因式分解:(1) (2)3、分解因式:18a3b+14a2b2abc-参考答案-一、单选题1、D【分析】根据因式分解是把一个多项式转化成几个整式乘积的形式,可得答案.【详解】解:A、等式的右
5、边不是整式的积的形式,故A错误;B、等式右边分母含有字母不是因式分解,故B错误;C、等式的右边不是整式的积的形式,故C错误;D、是因式分解,故D正确;故选D.【点睛】本题考查了因式分解的定义,因式分解是把一个多项式转化成几个整式乘积的形式.2、A【分析】公因式的定义:一个多项式中每一项都含有的相同的因式,叫做这个多项式各项的公因式.由公因式的定义求解.【详解】解:这三个单项式的数字最大公因数是1,三项含有字母是a,b,其中a的最低次幂是a2,b的最低次幂是b,所以多项式的公因式是.故选A.【点睛】本题主要考查了公因式,关键是掌握确定多项式中各项的公因式,可概括为三“定”:定系数,即确定各项系数
6、的最大公约数;定字母,即确定各项的相同字母因式(或相同多项式因式);定指数,即各项相同字母因式(或相同多项式因式)的指数的最低次幂.3、B【分析】根据已知条件得出(x-1)3-(x-1)=0,再通过因式分解求出x的值,然后代入要求的式子进行计算即可得出答案.【详解】解:,x-1=(x-1)3,(x-1)3-(x-1)=0,(x-1)(x-1)2-1=0,(x-1)(x-1+1)(x-1-1)=0,x(x-1)(x-2)=0,x1=0,x2=1,x3=2,x2-x=0或x2-x=12-1=0或x2-x=22-2=2,故选:B.【点睛】此题考查了立方根,因式分解的应用,解题的关键是通过式子变形求出
7、x的值.4、A【分析】根据因式分解是把一个多项式转化成几个整式乘积的形式,可得答案.【详解】解:A、把一个多项式转化成两个整式乘积的形式,故A正确;B、等式不成立,故B错误;C、等式不成立,故C错误;D、是整式的乘法,故D错误;故选:A.【点睛】本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式乘积的形式,注意因式分解与整式乘法的区别.5、A【分析】根据因式分解是把一个多项式转化成几个整式的积的形式,可得答案;【详解】解:A、把一个多项式转化成了几个整式的积,故A符合题意;、没把一个多项式转化成几个整式积,故不符合题意;、是整式的乘法,故C不符合题意;、没把一个多项式转化成几个整式
8、积,故不符合题意;故选:A.【点睛】本题考查了因式分解的意义,解题的关键是掌握因式分解是把一个多项式转化成几个整式积.6、D【分析】先用提公因式法,再用平方差公式即可完成.【详解】a39aa(a29)a(a+3)(a3).故选:D.【点睛】本题考查了因式分解,用到了提公因式法和公式法,因式分解一般是先考虑提公因式法,再考虑公式法,注意的是,因式分解要进行到再也不能分解为止.7、D【分析】把一个多项式化为几个整式的乘积的形式叫因式分解,根据定义对各选项进行一一分析判断即可.【详解】A. a2a1a(a1)从左往右的变形是乘积形式,但(a1)不是整式,故选项A不是因式分解;B. (ab)(a+b)
9、a2b2,从左往右的变形是多项式的乘法,故选项B不是因式分解;C. m2m1m(m1)1,从左往右的变形不是整体的积的形式,故选项C不是因式分解;D.根据因式分解的定义可知 m(ab)+n(ba)(mn)(ab)是因式分解,故选项D从左往右的变形是因式分解.故选D.【点睛】本题考查因式分解,掌握因式分解的特征从左往右的变形后各因式乘积,各因式必须为整式,各因式之间不有加减号是解题关键.8、A【分析】首先利用多项式乘法将原式展开,进而得出a,b的值,即可得出答案.【详解】解:多项式x2+ax+b分解因式的结果为(x+3)(x-4),x2+ax+b=(x+3)(x-4)=x2-x-12,故a=-1
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021 2022 学年 浙教版 初中 数学 年级 下册 第四 因式分解 章节 测评 试题 答案 解析
限制150内