2021-2022学年基础强化北师大版九年级数学下册第三章-圆章节练习试题(含详解).docx
《2021-2022学年基础强化北师大版九年级数学下册第三章-圆章节练习试题(含详解).docx》由会员分享,可在线阅读,更多相关《2021-2022学年基础强化北师大版九年级数学下册第三章-圆章节练习试题(含详解).docx(29页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、北师大版九年级数学下册第三章 圆章节练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在RtABC中,以边上一点为圆心作,恰与边,分别相切于点,则阴影部分的面积为( )ABCD2、小明设计了如图所
2、示的树型图案,它是由4个正方形、8个等边三角形和5个扇形组成,其中正方形的边长、等边三角形的边长和扇形的半径均为3,则图中扇形的弧长总和为()A8BCD123、如图,一个宽为2厘米的刻度尺(刻度单位:厘米)放在圆形玻璃杯的杯口上,刻度尺的一边与杯口外沿相切,另一边与杯口外沿两个交点处的读数恰好是2和8,那么玻璃杯的杯口外沿半径为()A5厘米B4厘米C厘米D厘米4、一个圆形人工湖如图所示,弦AB是湖上的一座桥,已知桥AB长100m,测得圆周角,则这个人工湖的直径AD为( )mABCD2005、如图,已知AB是O的直径,CD是弦,若BCD36,则ABD等于()A54B56C64D666、在数轴上,
3、点A所表示的实数为3,点B所表示的实数为a,A的半径为2,下列说法错误的是()A当a5时,点B在A内B当1a5时,点B在A内C当a1时,点B在A外D当a5时,点B在A外7、如图,是正方形的外接圆,若的半径为4,则正方形的边长为( )A4B8CD8、如图,在中,将绕点按逆时针方向旋转后得到,则图中阴影部分面积为( )ABCD9、如图,小王将一长为4,宽为3的长方形木板放在桌面上按顺时针方向做无滑动的翻滚,当第二次翻滚时被桌面上一小木块挡住,此时木板与桌面成30角,则点A运动到A2时的路径长为()A10B4CD10、利用定理“同弧所对圆心角是圆周角的两倍”,可以直接推导出的命题是( )A直径所对圆
4、周角为B如果点在圆上,那么点到圆心的距离等于半径C直径是最长的弦D垂直于弦的直径平分这条弦第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,已知PA、PB是O的两条切线,点A、点B为切点,线段OP交O于点M下列结论:PAPB;OPAB;四边形OAPB有外接圆;点M是AOP外接圆的圆心其中正确的结论是_(填序号)2、 “化圆为方”是古希腊尺规作图难题之一,即:求作一个正方形,使其面积等于给定圆的面积这个问题困扰了人类上千年,直到19世纪,该问题被证明仅用直尺和圆规是无法完成的如果借用一个圆形纸片,我们就可以化圆为方,方法如下:已知:O(纸片),其半径为求作:一个正方形
5、,使其面积等于O的面积作法:如图1,取O的直径,作射线,过点作的垂线;如图2,以点为圆心,为半径画弧交直线于点;将纸片O沿着直线向右无滑动地滚动半周,使点,分别落在对应的,处;取的中点,以点为圆心,为半径画半圆,交射线于点;以为边作正方形正方形即为所求根据上述作图步骤,完成下列填空:(1)由可知,直线为O的切线,其依据是_(2)由可知,则_,_(用含的代数式表示)(3)连接,在Rt中,根据,可计算得_(用含的代数式表示)由此可得3、如图,为的外接圆,则直径长为_4、圆形角是270的扇形的半径为4cm,则这个扇形的面积是_5、如图,网格中的小正方形边长都是1,则以为圆心,为半径的和弦所围成的弓形
6、面积等于_三、解答题(5小题,每小题10分,共计50分)1、下面是小石设计的“过三角形一个顶点作其对边的平行线”的尺规作图过程已知:如图,求作:直线BD,使得作法:如图,分别作线段AC,BC的垂直平分线,两直线交于点O;以点O为圆心,OA长为半径作圆;以点A为圆心,BC长为半径作孤,交于点D;作直线BD所以直线BD就是所求作的直线根据小石设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明证明:连接AD,点A,B,C,D在上,_(_)(填推理的依据)2、如图,在ABCD中,D60,对角线ACBC,O经过点A、点B,与AC交于点M,连接AO并延长与O交于点F,
7、与CB的延长线交于点E,ABEB(1)求证:EC是O的切线;(2)若AD2,求O的半径3、如图,O是ABC的外接圆,AB是O的直径,ABCD于点E,P是AB延长线上一点,且BCPBCD(1)求证:CP是O的切线;(2)连接DO并延长,交AC于点F,交O于点G,连接GC若O的半径为5,OE3,求GC和OF的长4、如图,O是四边形ABCD的外接圆,AD为O的直径连结BD,若(1)求证:12(2)当AD4,BC4时,求ABD的面积5、如图,在RtABC中,点O在斜边AB上,以O为圆心,OB为半径作圆,分别与BC,AB相交于点D,E,连接AD已知(1)求证:AD是O的切线(2)若OB2,CAD30,则
8、的长为 -参考答案-一、单选题1、A【分析】连结OC,根据切线长性质DC=AC,OC平分ACD,求出OCD=OCA=30,利用在RtABC中,AC=ABtanB=3,在RtAOC中,ACO=30,AO=ACtan30=,利用三角形面积公式求出,再求出扇形面积,利用割补法求即可【详解】解:连结OC,以边上一点为圆心作,恰与边,分别相切于点A, ,DC=AC,OC平分ACD,ACD=90-B=60,OCD=OCA=30,在RtABC中,AC=ABtanB=3,在RtAOC中,ACO=30,AO=ACtan30=,OD=OA=1,DC=AC=,DOC=360-OAC-ACD-ODC=360-90-9
9、0-60=120,S阴影=故选择A【点睛】本题考查切线长性质,锐角三角形函数,扇形面积,三角形面积,角的和差计算,割补法求阴影面积,掌握切线长性质,锐角三角形函数,扇形面积,三角形面积,角的和差计算,割补法求阴影面积是解题关键2、C【分析】如图(见解析),先分别求出扇形、和的圆心角的度数,再利用弧长公式即可得【详解】解:如图,扇形、和的圆心角的度数均为,扇形和的圆心角的度数均为,则图中扇形的弧长总和,故选:C【点睛】本题考查了求弧长,熟记弧长公式(,其中为弧长,为圆心角的度数,为扇形的半径)是解题关键3、D【分析】根据题意先求出弦AC的长,再过点O作OBAC于点B,由垂径定理可得出AB的长,设
10、杯口的半径为r,则OB=r-2,OA=r,在RtAOB中根据勾股定理求出r的值即可【详解】解:杯口外沿两个交点处的读数恰好是2和8,AC=8-2=6厘米,过点O作OBAC于点B,则AB=AC=6=3厘米,设杯口的半径为r,则OB=r-2,OA=r,在RtAOB中,OA2=OB2+AB2,即r2=(r-2)2+32,解得r=厘米故选:D【点睛】本题考查的是垂径定理的应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键4、B【分析】连接BD,利用同弧所对圆周角相等以及直径所对的角为直角,求证为等腰直角三角形,最后利用勾股定理,求出AD即可【详解】解:连接BD,如下图所示:与所对的弧都是 所对
11、的弦为直径AD, 又,为等腰直角三角形,在中,由勾股定理可得: 故选:B【点睛】本题主要是考查了圆周角定理以及直径所对的圆周角为直角和勾股定理,熟练运用圆周角定理以及直径所对的圆周角为直角,得到对应的直角三角形,再用勾股定理求解边长,是解决本题的主要思路5、A【分析】根据圆周角定理得到ADB90,ABCD36,然后利用互余计算ABD的度数【详解】AB是O的直径,ADB90,DABBCD36,ABDADBDAB,即ABD90DAB903654故选:A【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半半圆(或直径)所对的圆周角是直角,90的圆周
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021 2022 学年 基础 强化 北师大 九年级 数学 下册 第三 章节 练习 试题 详解
限制150内