2021-2022学年基础强化北师大版九年级数学下册第三章-圆月考练习题(精选).docx
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《2021-2022学年基础强化北师大版九年级数学下册第三章-圆月考练习题(精选).docx》由会员分享,可在线阅读,更多相关《2021-2022学年基础强化北师大版九年级数学下册第三章-圆月考练习题(精选).docx(33页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、北师大版九年级数学下册第三章 圆月考 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知O的半径为5,若点P在O内,则OP的长可以是()A4B5C6D72、利用定理“同弧所对圆心角是圆周角的两倍”,可以直
2、接推导出的命题是( )A直径所对圆周角为B如果点在圆上,那么点到圆心的距离等于半径C直径是最长的弦D垂直于弦的直径平分这条弦3、如图,四边形ABCD内接于,若,则的度数为( )A50B100C130D1504、如图,直线交x轴于点A,交y轴于点B,点P是x轴上一动点,以点P为圆心,以1个单位长度为半径作P,当P与直线AB相切时,点P的坐标是()ABC或D(2,0)或(5,0)5、如图,正的边长为,边长为的正的顶点R与点A重合,点P,Q分别在AC,AB上,将沿着边AB,BC,CA连续翻转(如图所示),直至点P第一次回到原来的位置,则点P运动路径的长为( )ABCD6、如图,是半圆的直径,四边形和
3、都是正方形,其中点,在上,点,在半圆上若,则正方形的面积与正方形的面积之和是( )A25B50CD7、半径为10的O,圆心在直角坐标系的原点,则点(8,6)与O的位置关系是()A在O上B在O内C在O外D不能确定8、如图,在圆内接五边形中,则的度数为( )ABCD9、如图,边长为4的正三角形外接圆,以其各边为直径作半圆,则图中阴影部分面积为()A12+2B4+C24+2D12+1410、已知正三角形外接圆半径为,这个正三角形的边长是( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、一个扇形的半径为4,圆心角为135,则此扇形的弧长为 _2、如图,点A,B,C在
4、O上,四边形OABC是平行四边形,若对角线AC2,则的长为 _3、AC是O的直径,弦BDAC于点E,连接BC,过点O作OFBC于点F,若BD12cm,OEcm,则OF_cm4、如图,它是在纸板上剪下的一个半圆和一个圆形,它们恰好能组成一个圆锥模型已知半圆的半径为1,则该圆锥的侧面积是 _5、如图,点,均在的正方形网格格点上,过,三点的外接圆除经过,三点外还能经过的格点数为_三、解答题(5小题,每小题10分,共计50分)1、(教材呈现)下图是华师版九年级下册数学教材第43页的部分内容圆周角定理在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于该弧所对的圆心角的一半;相等的圆周角所对的弧相等由圆周
5、角定理,可以得到以下推论:推论1 90的圆周角所对的弦是直径(如图)(推论证明)已知:ABC的三个顶点都在O上,且ACB90 求证:线段AB是O的直径 请你结合图写出推论1的证明过程(深入探究)如图,点A,B,C,D均在半径为1的O上,若ACB90,ACD60则线段AD的长为 (拓展应用)如图,已知ABC是等边三角形,以AC为底边在三角形ABC外作等腰直角三角形ACD,点E是BC的中点,连结DE 若AB,则DE的长为 2、如图,在ABC中,以AB为直径的O交BC于点D,与CA的延长线交于点E,O的切线DF与AC垂直,垂足为F(1)求证:ABAC(2)若CF2AF,AE4,求O的半径3、如图,内
6、接于O,且为O的直径,交于点,在的延长线上取点,使得DCEB(1)求证:是O的切线;(2)若,求AE的长4、如图,在RtABC中,点O在斜边AB上,以O为圆心,OB为半径作圆,分别与BC,AB相交于点D,E,连接AD已知(1)求证:AD是O的切线(2)若OB2,CAD30,则的长为 5、在平面直角坐标系xOy中,O的半径为1对于线段AB,给出如下定义:若线段AB沿着某条直线l对称可以得到O的弦AB,则称线段AB是O的以直线l为对称轴的“反射线段”,直线l称为“反射轴”(1)如图,线段CD,EF,GH中是O的以直线l为对称轴的“反射线段”有 ;(2)已知A点坐标为(0,2),B点坐标为(1,1)
7、,若线段AB是O的以直线l为对称轴的“反射线段”,求反射轴l与y轴的交点M的坐标若将“反射线段”AB沿直线yx的方向向上平移一段距离S,其反射轴l与y轴的交点的纵坐标yM的取值范围为yM,求S(3)已知点M,N是在以原点为圆心,半径为2的圆上的两个动点,且满足MN1,若MN是O的以直线l为对称轴的“反射线段”,当M点在圆上运动一周时,求反射轴l未经过的区域的面积(4)已知点M,N是在以(2,0)为圆心,半径为的圆上的两个动点,且满足MN,若MN是O的以直线l为对称轴的“反射线段”,当M点在圆上运动一周时,请直接写出反射轴l与y轴交点的纵坐标的取值范围-参考答案-一、单选题1、A【分析】根据点与
8、圆的位置关系可得,由此即可得出答案【详解】解:的半径为5,点在内,观察四个选项可知,只有选项A符合,故选:A【点睛】本题考查了点与圆的位置关系,熟练掌握点与圆的位置关系(圆内、圆上、圆外)是解题关键2、A【分析】定理“同弧所对圆心角是圆周角的两倍”是圆周角定理,分析各个选项即可.【详解】A选项,直径所在的圆心角是180,直接可以由圆周角定理推导出:直径所对的圆周角为,A选项符合要求;B、C选项,根据圆的定义可以得到;D选项,是垂径定理;故选:A【点睛】本题考查圆的基本性质,熟悉圆周角定理及其推论是解题的关键.3、B【分析】根据圆内接四边形的性质求出A的度数,根据圆周角定理计算即可【详解】解:四
9、边形ABCD内接于O,A+DCB=180,DCB=130,A=50,由圆周角定理得,=2A=100,故选:B【点睛】本题考查的是圆内接四边形的性质和圆周角定理,掌握圆内接四边形的对角互补是解题的关键4、C【分析】由题意根据函数解析式求得A(-4,0),B(0-3),得到OA=4,OB=3,根据勾股定理得到AB=5,设P与直线AB相切于D,连接PD,则PDAB,PD=1,根据相似三角形的性质即可得到结论【详解】解:直线交x轴于点A,交y轴于点B,令x=0,得y=-3,令y=0,得x=-4,A(-4,0),B(0,-3),OA=4,OB=3,AB=5,设P与直线AB相切于D,连接PD,则PDAB,
10、PD=1,ADP=AOB=90,PAD=BAO,APDABO,AP= ,OP= 或OP= ,P或P,故选:C【点睛】本题考查切线的判定和性质,一次函数图形上点的坐标特征,相似三角形的判定和性质,正确的理解题意并运用数形结合思维分析是解题的关键5、B【分析】从图中可以看出在AB边,翻转的第一次是一个120度的圆心角,半径是1,第二次是以点P为圆心,所以没有路程,同理在AC和BC上也是相同的情况,由此求解即可【详解】解:从图中可以看出在AB边,翻转的第一次是一个120度的圆心角,半径是1,所以弧长=,第二次是以点P为圆心,所以没有路程,在BC边上,第一次,第二次同样没有路程,AC边上也是如此,点P
11、运动路径的长为3=2故选:B【点睛】本题主要考查了等边三角形的性质,求弧长,解题的关键在于能够根据题意得到P点的运动轨迹6、A【分析】连接ON,OF,根据题意可得:ON=OF=5,设CN=x,EF=y,由勾股定理得:x2+(x+DO)2=25,y2+(y-DO)2=25,然后-化简得:(xy)(xDO-y)=0,从而得到y-DO=x,再代入,即可求解【详解】解:如图,连接ON,OF,直径,ON=OF=5,设CN=x,EF=y, 由勾股定理得:x2+(x+DO)2=25,y2+(y-DO)2=25,-化简得:(xy)(xDO-y)=0,因为x+y0,所以x+DO-y=0,即y-DO=x,代入,得
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021 2022 学年 基础 强化 北师大 九年级 数学 下册 第三 圆月 练习题 精选
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内