2022年最新精品解析沪科版九年级数学下册第24章圆专项测评试卷.docx
《2022年最新精品解析沪科版九年级数学下册第24章圆专项测评试卷.docx》由会员分享,可在线阅读,更多相关《2022年最新精品解析沪科版九年级数学下册第24章圆专项测评试卷.docx(39页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、沪科版九年级数学下册第24章圆专项测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,边长为5的等边三角形中,M是高所在直线上的一个动点,连接,将线段绕点B逆时针旋转得到,连接则在点M运动过程中,线
2、段长度的最小值是( )AB1C2D2、下列判断正确的个数有( )直径是圆中最大的弦;长度相等的两条弧一定是等弧;半径相等的两个圆是等圆;弧分优弧和劣弧;同一条弦所对的两条弧一定是等弧A1个B2个C3个D4个3、如图,与的两边分别相切,其中OA边与相切于点P若,则OC的长为( )A8BCD4、在下列图形中,既是中心对称图形又是轴对称图形的是( )ABCD5、如图,AB,CD是O的弦,且,若,则的度数为( )A30B40C45D606、如图,在RtABC中,ACB90,A30,BC2将ABC绕点C按顺时针方向旋转到点D落在AB边上,此时得到EDC,斜边DE交AC边于点F,则图中阴影部分的面积为(
3、)A3B1CD7、如图,点A、B、C在上,则的度数是( )A100B50C40D258、随着2022年北京冬奥会日渐临近,我国冰雪运动发展进入快车道,取得了长足进步在此之前,北京冬奥组委曾面向全球征集2022年冬奥会会徵和冬残奥会会徽设计方案,共收到设计方案4506件,以下是部分参选作品,其中既是轴对称图形又是中心对称图形的是( )ABCD9、如图,AB为的直径,劣弧BC的长是劣弧BD长的2倍,则AC的长为( )ABC3D10、如图,在中,将绕原点O逆时针旋转90,则旋转后点A的对应点的坐标是( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知正多边形的半
4、径与边长相等,那么正多边形的边数是_2、如图AB为O的直径,点P为AB延长线上的点,过点P作O的切线PE,切点为M,过A、B两点分别作PE垂线AC、BD,垂足分别为C、D,连接AM,则下列结论正确的是_(写所有正确论的号)AM平分CAB;若AB=4,APE=30,则的长为;若AC=3BD,则有tanMAP=3、如图,在ABC中,C90,AB=10,在同一平面内,点O到点A,B,C的距离均等于a(a为常数)那么常数a的值等于_4、半径为6cm的扇形的圆心角所对的弧长为cm,这个圆心角_度5、如图,将RtABC的斜边AB与量角器的直径恰好重合,B点与零刻度线的一端重合,ABC38,射线CD绕点C转
5、动,与量角器外沿交于点D,若射线CD将ABC分割出以BC为边的等腰三角形,则点D在量角器上对应的度数是 _三、解答题(5小题,每小题10分,共计50分)1、如图,是的直径,四边形内接于,是的中点,交的延长线于点(1)求证:是的切线;(2)若,求的长2、新定义:在平面直角坐标系xOy中,若几何图形G与A有公共点,则称几何图形G为A的关联图形,特别地,若A的关联图形G为直线,则称该直线为A的关联直线如图1,M为A的关联图形,直线l为A的关联直线(1)已知O是以原点为圆心,2为半径的圆,下列图形:直线y2x+2;直线yx+3;双曲线y,是O的关联图形的是 (请直接写出正确的序号)(2)如图2,T的圆
6、心为T(1,0),半径为1,直线l:yx+b与x轴交于点N,若直线l是T的关联直线,求点N的横坐标的取值范围(3)如图3,已知点B(0,2),C(2,0),D(0,2),I经过点C,I的关联直线HB经过点B,与I的一个交点为P;I的关联直线HD经过点D,与I的一个交点为Q;直线HB,HD交于点H,若线段PQ在直线x6上且恰为I的直径,请直接写出点H横坐标h的取值范围3、在等边中,是边上一动点,连接,将绕点顺时针旋转120,得到,连接(1)如图1,当、三点共线时,连接,若,求的长;(2)如图2,取的中点,连接,猜想与存在的数量关系,并证明你的猜想;(3)如图3,在(2)的条件下,连接、交于点若,
7、请直接写出的值4、下面是小明设计的“作圆的内接等腰直角三角形”的尺规作图过程.已知:O.求作:O的内接等腰直角三角形ABC. 作法:如图,作直径AB;分别以点A, B为圆心,以大于的长为半径作弧,两弧交于M 点;作直线MO交O于点C,D;连接AC,BC所以ABC就是所求的等腰直角三角形.根据小明设计的尺规作图过程,解决下面的问题:(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:连接MA,MBMA=MB,OA=OB,MO是AB的垂直平分线AC= AB是直径,ACB= ( ) (填写推理依据) ABC是等腰直角三角形5、如图,已知等边内接于O,D为的中点,连接DB,DC
8、,过点C作AB的平行线,交BD的延长线于点E(1)求证:CE是O的切线;(2)若AB的长为6,求CE的长-参考答案-一、单选题1、A【分析】取CB的中点G,连接MG,根据等边三角形的性质可得BH=BG,再求出HBN=MBG,根据旋转的性质可得MB=NB,然后利用“边角边”证明MBGNBH,再根据全等三角形对应边相等可得HN=MG,然后根据垂线段最短可得MGCH时最短,再根据BCH=30求解即可【详解】解:如图,取BC的中点G,连接MG,旋转角为60,MBH+HBN=60,又MBH+MBC=ABC=60,HBN=GBM,CH是等边ABC的对称轴,HB=AB,HB=BG,又MB旋转到BN,BM=B
9、N,在MBG和NBH中,MBGNBH(SAS),MG=NH,根据垂线段最短,MGCH时,MG最短,即HN最短,此时BCH=60=30,CG=AB=5=2.5,MG=CG=,HN=,故选A【点睛】本题考查了旋转的性质,等边三角形的性质,全等三角形的判定与性质,垂线段最短的性质,作辅助线构造出全等三角形是解题的关键,也是本题的难点2、B【详解】直径是圆中最大的弦;故正确,同圆或等圆中长度相等的两条弧一定是等弧;故不正确半径相等的两个圆是等圆;故正确弧分优弧、劣弧和半圆,故不正确同一条弦所对的两条弧可位于弦的两侧,故不一定相等,则不正确综上所述,正确的有故选B【点睛】本题考查了圆相关概念,掌握弦与弧
10、的关系以及相关概念是解题的关键3、C【分析】如图所示,连接CP,由切线的性质和切线长定理得到CPO=90,COP=45,由此推出CP=OP=4,再根据勾股定理求解即可【详解】解:如图所示,连接CP,OA,OB都是圆C的切线,AOB=90,P为切点,CPO=90,COP=45,PCO=COP=45,CP=OP=4,故选C【点睛】本题主要考查了切线的性质,切线长定理,等腰直角三角形的性质与判定,勾股定理,熟知切线长定理是解题的关键4、B【分析】根据中心对称图形与轴对称图形的定义解答即可.【详解】解:A.是轴对称图形,不是中心对称图形,不符合题意;B既是中心对称图形又是轴对称图形,符合题意;C. 是
11、轴对称图形,不是中心对称图形,不符合题意;D. 既不是中心对称图形,也不是轴对称图形,不符合题意.故选B.【点睛】本题主要考查的是中心对称图形与轴对称图形的定义.一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形叫作轴对称图形;把一个图形绕着某个点旋转180,如果旋转后的图形与另一个图形重合叫作中心对称图形.5、B【分析】由同弧所对的圆周角是圆心角的一半可得,利用平行线的性质:两直线平行,内错角相等即可得【详解】解:,故选:B【点睛】题目主要考查圆周角定理,平行线的性质等,理解题意,找出相关的角度是解题关键6、D【分析】根据题意及旋转的性质可得是等边三角形,则,根据含30度角的直角三角形
12、的性质,即可求得,由勾股定理即可求得,进而求得阴影部分的面积【详解】解:如图,设与相交于点,旋转,是等边三角形,阴影部分的面积为故选D【点睛】本题考查了等边三角形的性质,勾股定理,含30度角的直角三角形的性质,旋转的性质,利用含30度角的直角三角形的性质是解题的关键7、C【分析】先根据圆周角定理求出AOB的度数,再由等腰三角形的性质即可得出结论【详解】ACB=50,AOB=100,OA=OB,OAB=OBA= 40,故选:C【点睛】本题考查的是圆周角定理,即在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半8、C【分析】根据轴对称图形与中心对称图形的概念求解【详解】A是
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 最新 精品 解析 沪科版 九年级 数学 下册 24 专项 测评 试卷
限制150内