浙江碳化硅衬底设备项目实施方案模板范本.docx





《浙江碳化硅衬底设备项目实施方案模板范本.docx》由会员分享,可在线阅读,更多相关《浙江碳化硅衬底设备项目实施方案模板范本.docx(130页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、泓域咨询/浙江碳化硅衬底设备项目实施方案浙江碳化硅衬底设备项目实施方案xxx(集团)有限公司目录第一章 市场分析7一、 新能源车带来百亿级市场空间,光伏逆变器应用前景可期7二、 衬底为技术壁垒最高环节,价值量占比46%9三、 受益新能源车爆发,SiC产业化黄金时代将来临10第二章 项目背景及必要性12一、 第三代半导体之星,高压、高功率应用场景下性能优越12二、 SiC衬底设备:与传统晶硅差异较小,工艺调教为核心壁垒13三、 念好新时代“山海经”,推动区域协调发展14第三章 项目基本情况19一、 项目名称及投资人19二、 编制原则19三、 编制依据20四、 编制范围及内容20五、 项目建设背景
2、21六、 结论分析21主要经济指标一览表23第四章 建筑技术分析26一、 项目工程设计总体要求26二、 建设方案27三、 建筑工程建设指标28建筑工程投资一览表28第五章 建设内容与产品方案30一、 建设规模及主要建设内容30二、 产品规划方案及生产纲领30产品规划方案一览表31第六章 SWOT分析说明32一、 优势分析(S)32二、 劣势分析(W)34三、 机会分析(O)34四、 威胁分析(T)35第七章 法人治理43一、 股东权利及义务43二、 董事50三、 高级管理人员55四、 监事58第八章 发展规划分析61一、 公司发展规划61二、 保障措施65第九章 原辅材料供应68一、 项目建设
3、期原辅材料供应情况68二、 项目运营期原辅材料供应及质量管理68第十章 环境保护方案70一、 编制依据70二、 环境影响合理性分析71三、 建设期大气环境影响分析72四、 建设期水环境影响分析75五、 建设期固体废弃物环境影响分析75六、 建设期声环境影响分析75七、 环境管理分析77八、 结论及建议79第十一章 进度规划方案81一、 项目进度安排81项目实施进度计划一览表81二、 项目实施保障措施82第十二章 工艺技术方案分析83一、 企业技术研发分析83二、 项目技术工艺分析86三、 质量管理87四、 设备选型方案88主要设备购置一览表89第十三章 投资估算及资金筹措90一、 投资估算的依
4、据和说明90二、 建设投资估算91建设投资估算表95三、 建设期利息95建设期利息估算表95固定资产投资估算表97四、 流动资金97流动资金估算表98五、 项目总投资99总投资及构成一览表99六、 资金筹措与投资计划100项目投资计划与资金筹措一览表100第十四章 项目经济效益102一、 基本假设及基础参数选取102二、 经济评价财务测算102营业收入、税金及附加和增值税估算表102综合总成本费用估算表104利润及利润分配表106三、 项目盈利能力分析106项目投资现金流量表108四、 财务生存能力分析109五、 偿债能力分析110借款还本付息计划表111六、 经济评价结论111第十五章 招标
5、、投标113一、 项目招标依据113二、 项目招标范围113三、 招标要求114四、 招标组织方式116五、 招标信息发布116第十六章 项目综合评价117第十七章 附表119建设投资估算表119建设期利息估算表119固定资产投资估算表120流动资金估算表121总投资及构成一览表122项目投资计划与资金筹措一览表123营业收入、税金及附加和增值税估算表124综合总成本费用估算表125固定资产折旧费估算表126无形资产和其他资产摊销估算表127利润及利润分配表127项目投资现金流量表128第一章 市场分析一、 新能源车带来百亿级市场空间,光伏逆变器应用前景可期2021年特斯拉全球销量达93.6万
6、辆,主要为Model3/ModelY车型贡献。预计特斯拉未来2年Model3/ModelY年产能将达到200万辆(其中,美国工厂100万辆+中国工厂50万辆+德国柏林工厂50万辆)。假设2022年Model3/ModelY产量150万辆,单车消耗0.25片6英寸SiC晶圆,则对应一年消耗6英寸SiC37.5万片,目前全球SiC晶圆总产能约在5060万片/年,供给端产能吃紧。同时,目前特斯拉Model3的SiCMOSFET只用在主驱逆变器电力模块上,共48颗SiCMOSFET,对应单车消耗约0.25片6英寸SiC衬底。如未来延伸用在包括OBC、DC/DC转换器、高压辅驱控制器、主驱控制器、充电器
7、等,单车SiC器件使用量将达到100-150颗,市场需求将进一步扩大(单车消耗有望达0.5片6英寸SiC衬底)。新能源车需求快速爆发,SiC产能吃紧,全球产能扩产有望加速。据DIGITIMESResearch数据,2021年全球电动汽车销量有望达631万辆(占总销量约6%),同比增长101%。对应2025年新能源车市场6英寸SiC衬底需求达587万片/年,市场空间达231亿元。如未来SiC器件更多广泛的应用于充电桩、光伏逆变器、5G通信、轨交等领域,市场空间有望进一步扩大。n在光伏发电应用中,基于硅基器件的传统逆变器成本约占系统10%左右,是系统能量损耗的主要来源之一。随着光伏产业迈入“大组件
8、、大逆变器、大跨度支架、大组串”时代,光伏电站电压等级从1000V提升至1500V以上,就必须使用碳化硅功率器件。据中国汽车工业信息网,使用碳化硅MOSFET或碳化硅MOSFET与碳化硅SBD结合的功率模块的光伏逆变器,转换效率可从96%提升至99%以上,能量损耗降低50%以上,设备循环寿命提升50倍,从而能够缩小系统体积、增加功率密度、延长器件使用寿命、降低生产成本。据CASAResearch数据,2020年光伏逆变器中使用碳化硅功率器件的占比为10%,预计2025年碳化硅光伏逆变器占比将达到50%,2048年将达到85%。光伏装机需求未来十年(2020-2030年)10倍大赛道,预计203
9、0年中国光伏新增装机需求达416-537GW,CAGR达24%-26%;全球新增装机需求达1246-1491GW,CAGR达25%-27%。拥有巨大的市场空间。预计碳化硅衬底在新能源车+光伏逆变器领域2025年市场空间达261亿元。行业供需缺口较大,产能扩张需求势在必行。据CASAResearch整理,2019年有6家国际巨头宣布了12项扩产,主要为衬底产能的扩张,其中最大的项目为科锐公司投资近10亿美元的扩产计划,分别在北卡罗来纳州和纽约州建造全新的可满足车规级标准的8英寸功率和射频衬底制造工厂。二、 衬底为技术壁垒最高环节,价值量占比46%SiC产业链包括上游的衬底和外延环节、中游的器件和
10、模块制造环节,以及下游的应用环节。其中衬底的制造是产业链技术壁垒最高、价值量最大环节,是未来SiC大规模产业化推进的核心。衬底:价值量占比46%,为最核心的环节。由SiC粉经过长晶、加工、切割、研磨、抛光、清洗环节最终形成衬底。其中SiC晶体的生长为核心工艺,核心难点在提升良率。类型可分为导电型、和半绝缘型衬底,分别用于功率和射频器件领域。外延:价值量占比23%。本质是在衬底上面再覆盖一层薄膜以满足器件生产的条件。具体分为:导电型SiC衬底用于SiC外延,进而生产功率器件用于电动汽车以及新能源等领域。半绝缘型SiC衬底用于氮化镓外延,进而生产射频器件用于5G通信等领域。器件制造:价值量占比约2
11、0%(包括设计+制造+封装)。产品包括SiC二级管、SiCMOSFET、全SiC模块(SiC二级管和SiCMOSFET构成)、SiC混合模块(SiC二级管和SiCIGBT构成)。4)应用:半绝缘碳化硅器件主要用于5G通信、车载通信、国防应用、数据传输、航空航天。导电型碳化硅器件主要用于电动汽车、光伏发电、轨道交通、数据中心、充电等基础建设。三、 受益新能源车爆发,SiC产业化黄金时代将来临据Yole统计,2020年SiC碳化硅功率器件市场规模约7.1亿美元,预计2026年将增长至45亿美元,2020-2026年CAGR近36%。其中,新能源汽车是SiC功率器件下游最重要的应用市场,预计需求于2
12、023年开始快速爆发。新能源汽车是碳化硅功率器件市场的主要增长驱动。SiC功率器件主要应用于新能源车逆变器、DC/DC转换器、电机驱动器和车载充电器(OBC)等核心电控领域,以完成较Si更高效的电能转换。预计随着新能源车需求快速爆发,以及SiC衬底工艺成熟、带来产业链降本增效,产业化进程有望提速。应用端:解决电动车续航痛点。据Wolfspeed测算,将纯电动汽车逆变器中的功率组件改成SiC时,可显著降低电力电子系统的体积、重量和成本,提升车辆5%-10%的续航。据英飞凌测算,SiC器件整体损耗相比Si基器件降低80%以上,导通及开关损耗减小,有助于增加电动车续航里程。成本端:单车可节省400-
13、800美元的电池成本,与新增200美元的SiC器件成本抵消后,能够实现至少200-600美元的单车成本下降。客户端:特斯拉等车企已相继布局。Model3是行业第一家采用SiC逆变器的车型,开启了电动汽车使用SiC先河,单车总共有48个SiCMOSFET裸片,由意法半导体和英飞凌提供。其他车企包括比亚迪汉、丰田Mirai等也相继开始采用SiC逆变器。目前各大车企已在碳化硅领域纷纷布局,成本是决定SiC何时在新能源车大批量使用的关键因素。2017年,特斯拉Model3成为第一家使用SiC逆变器的车型,其逆变器总重量下降至4.8kg(较此前减少约84%),续航能力提升6%(逆变器和永磁电机组合的效率
14、高达97%,此前为82%)。预计未来续航里程500公里以上的高端SUV车和轿车有望均应用到SiC功率器件,小型SUV和中型轿车可能在2024-2025年后开始应用一部分SiC(随着SiC衬底产能大规模释放、成本下降),低端车可能会再随这之后。第二章 项目背景及必要性一、 第三代半导体之星,高压、高功率应用场景下性能优越半导体材料是制作半导体器件和集成电路的电子材料。核心分为以下三代:1、第一代元素半导体材料:硅(Si)和锗(Ge);为半导体最常用的材料,起源于20世纪50年代,奠定了微电子产业的基础。2、第二代化合物半导体材料:砷化镓(GaAs)、磷化铟(InP)等;是4G时代的大部分通信设备
15、的材料,起源于20世纪90年代,奠定了信息产业的基础。3、第三代宽禁带材料:碳化硅(SiC)、氮化镓(GaN)、氮化铝(ALN)、氧化镓(Ga2O3)等,近10年世界各国陆续布局、产业化进程快速崛起。其中,碳化硅(SiC)为第三代半导体材料核心。核心用于功率+射频器件,适用于600V以上高压场景,包括光伏、风电、轨道交通、新能源汽车、充电桩等电力电子领域。SiC碳化硅是制作高温、高频、大功率、高压器件的理想材料之一:由碳元素和硅元素组成的一种化合物半导体材料。相比传统的硅材料(Si),碳化硅(SiC)的禁带宽度是硅的3倍;导热率为硅的4-5倍;击穿电压为硅的8-10倍;电子饱和漂移速率为硅的2
16、-3倍。核心优势体现在:耐高压特性:更低的阻抗、禁带宽度更宽,能承受更大的电流和电压,带来更小尺寸的产品设计和更高的效率;耐高频特性:SiC器件在关断过程中不存在电流拖尾现象,能有效提高元件的开关速度(大约是Si的3-10倍),适用于更高频率和更快的开关速度;耐高温特性:SiC相较硅拥有更高的热导率,能在更高温度下工作。相同规格的碳化硅基MOSFET与硅基MOSFET相比,其尺寸可大幅减小至原来的1/10,导通电阻可至少降低至原来的1/100。相同规格的碳化硅基MOSFET较硅基IGBT的总能量损耗可大大降低70%。碳化硅功率器件具有高电压、大电流、高温、高频率、低损耗等独特优势,将极大提高现
17、有使用硅基功率器件的能源转换效率,未来将主要应用领域有电动汽车/充电桩、光伏新能源、轨道交通、智能电网等。二、 SiC衬底设备:与传统晶硅差异较小,工艺调教为核心壁垒SiC衬底设备主要包括:长晶炉、切片机、研磨机、抛光机、清洗设备等。与传统传统晶硅设备具相通性、但工艺难度更高,设备+工艺合作研发是关键。长晶炉:主要由衬底制造厂商自研开发,可基本实现国产化(与传统晶硅级长晶炉有相同性,炉子结构不是非常复杂),市场没有形成商业性的独立第三方企业。因为长晶环节主要用的PVT(物理气相传输)的技术路线,温度很高,不可实施监控,难点不在设备本身,而是在工艺本身。因为基本上每家衬底厂商工艺不一样,也是各家
18、的核心机密所在,只有衬底制造企业内部通过对“设备+工艺”合作研发效率更高。主要设备厂商包括:Wolfspeed,Aymont,Aixtron,LHT,中国电科二所,山东天岳,天科合达,中科院硅酸盐所,中国电科四十六所等。切片机:碳化硅的切割和传统硅的切割方式相似,但因为碳化硅属于硬质材料(莫氏硬度达9.5,除金刚石以外世界上第二硬的材料),切割难度非常大,切一刀可能需几百个小时,对系统设备的稳定性很高,国内设备很难满足这个要求。目前日本高鸟的切片机设备(金刚石多线切割机)占据80%以上市场份额。其他公司包括MeryerBurger、NTC、中国电科四十五所、湖南宇晶、苏州郝瑞特等。研磨、抛光、
19、SMT设备:和传统硅机台基本类似,主要差别在于研磨盘和研磨液。国内外主要企业包括:日本不二越、韩国NTS、美国斯德堡、中电科四十五所、湖南宇晶、苏州赫瑞特等。三、 念好新时代“山海经”,推动区域协调发展完善和落实主体功能区战略,健全区域协调发展体制机制,扎实推进长三角一体化和长江经济带发展,推动海洋经济和山区经济协同发展,加快形成“一湾引领、两翼提升、四极辐射、全域美丽”的省域空间发展总体格局。(一)扎实推进长三角一体化和长江经济带发展推进长三角一体化发展。聚焦高质量、一体化,打造长三角创新发展极、长三角世界级城市群金南翼、长三角幸福美丽大花园和长三角改革开放引领区。加快共建长三角生态绿色一体
20、化发展示范区,加快建设“江南水乡客厅”、祥符荡科创绿谷。共同实施长三角产业链补链强链固链行动,共建“数字长三角”,推进全面创新改革试验,构建科技创新共同体。谋划推进长三角一体化标志性工程建设,加快城际铁路建设,深化洋山区域合作开发,打造“轨道上的长三角”和世界级港口群、机场群。共同推进长三角社会保障卡居民服务一卡通,共建公共卫生等重大突发事件应急体系。积极推进沪杭甬湾区经济创新区、长三角产业合作区、浙南闽东合作发展区规划建设。推进长江经济带发展。坚持共抓大保护、不搞大开发的战略导向。加强生态环境突出问题整治,加快实施长江经济带绿色试点示范。组织实施全省八大水系统一的禁渔期制度,构建八大水系综合
21、治理新体系。加强与长江上中下游联动发展,促进流域合作和布局优化。加强与长江沿岸港口合作开发,着力提升浙北航道网运输能力,建设舟山江海联运服务中心。加强长江文物和文化遗产保护。(二)建设引领未来的现代化大湾区推动大湾区建设和长三角一体化发展战略深度融合,打造高质量发展主平台。统筹优化湾区生产力布局,实施一批标志性工程。强化环杭州湾核心引领地位,聚焦创新驱动主引擎功能,大力推进科创大走廊建设,高水平打造杭州钱塘新区、宁波前湾新区、绍兴滨海新区、湖州南太湖新区、台州湾新区、金华金义新区,有序创建大湾区高能级战略平台。(三)加快建设海洋强省构建“一环一城两区四带多联”发展格局。强化全省域海洋意识、沿海
22、意识,坚持全域谋海、陆海统筹,全力推进海洋强省建设。依托一批科创大走廊,打造环杭州湾海洋科创核心环。加快建设海洋中心城市,深化浙江海洋经济发展示范区和舟山群岛新区2.0版建设。深入推进甬台温临港产业带建设,启动实施生态海岸带工程,加快构建海洋经济辐射联动带和省际腹地拓展延伸带。多渠道多领域联动山区26县与沿海发达地区协同高质量发展,加快提升全省陆海统筹协调发展水平。推进智慧海洋工程建设。实施智慧海洋“1355”行动。加快海洋信息基础设施建设,建成省级智慧海洋大数据中心,着力提升海洋信息综合感知、通信传输、资源处理能力。推进海洋数字产业化与海洋产业数字化,拓宽智慧海洋应用服务。加强智慧海洋高端装
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 浙江 碳化硅 衬底 设备 项目 实施方案 模板 范本

限制150内