人教版九年级数学下册第二十七章-相似难点解析练习题(无超纲).docx
《人教版九年级数学下册第二十七章-相似难点解析练习题(无超纲).docx》由会员分享,可在线阅读,更多相关《人教版九年级数学下册第二十七章-相似难点解析练习题(无超纲).docx(31页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、人教版九年级数学下册第二十七章-相似难点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在平面直角坐标系中,OAB与OCD位似,点O是它们的位似中心,已知A(6,6),C(2,2),则OCD与O
2、AB的面积之比为()A1:1B1:3C1:6D1:92、如图,平行四边形OABC的顶点O(0,0),A(1,2),点C在x轴的正半轴上,延长BA交y轴于点D将ODA绕点O顺时针旋转得到ODA,当点D的对应点D落在OA上时,DA的延长线恰好经过点C,则点B的坐标为( )A(2,2)B(2,2)C(21,2)D(21,2)3、如图所示,某校数学兴趣小组利用标杆BE测量建筑物的高度,已知标杆BE高为1.5m,测得AB3m,BC7m,则建筑物CD的高是( )mA3.5B4C4.5D4、如图,以点O为位似中心,将ABC缩小后得到ABC,已知BB2OB,则ABC与ABC的面积之比()A1:3B1:4C1:
3、5D1:95、如图在ABC外任取一点O,连接AO、BO、CO,并取它们的中点D、E、F,得到DEF,则下列说法正确的个数是()ABC与DEF是位似图形;ABC与DEF是相似图形;ABC与DEF的周长比为1:2;ABC与DEF的面积比为4:1A1个B2个C3个D4个6、如图,ABCDEF,若,BD9,则DF的长为()A2B4C6D87、在ABC中,ABAC,A36,BD平分ABC,交AC于点DBC8,则AC()A44B44C16D128、若2a3b,则的值为()ABCD9、如图,某学生利用标杆测量一棵大树的高度,如果标杆EC的高为2m,并测得,那么树DB的高度是( )A6mB8mC32mD25m
4、10、如图,D、E分别是ABC的边AB、BC上的点,且DEAC,若BEEC13,则DOE与COA的周长之比为( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知 , 那么 的值为_2、如图,四边形与四边形位似,其位似中心为点O,且,则_3、如图,在中,若,则的长为_4、在ABC中,点D、E分别在AB、AC上,AEDB,如果AB2,ADE的面积为4,四边形BCED的面积为5,那么AE的长为 _5、如图,在矩形ABCD中,AB30,BC40,对角线AC与BD相交于点O,点P为边AD上一动点,连接OP,将OPA沿OP折叠,点A的对应点为点E,线段PE交线段OD于
5、点F若PDF为直角三角形,则PD的长为_三、解答题(5小题,每小题10分,共计50分)1、【问题提出】已知有两个RtABC和RtABC,其中CC90,A60,A45(1)如图1,作线段CD,CD,分别交AB于点D,交AB于点D,使得BCD45,BCD30,问BCD与BCD,ACD与ACD是否相似?并选择其中相似的一对三角形,说明理由(2)如图2,作线段AD,BD,分别交BC于点D,交AC于点D,若ACD与BCD、ABD与ABD均相似,求CAD,CBD的度数【拓展思考】已知任意两个不相似的直角三角形,能否分别作一条直线对其进行分割,使其中一个三角形所分割得到的两个三角形与另一个三角形所分割得到的
6、两个三角形分别对应相似?如果可以,请直接画出一种分割示意图;如果不能,请说明理由2、如图,点是一次函数与反比例函数()的图象的一个交点,点是一次函数与轴的交点(1)求反比例函数表达式;(2)点是轴正半轴上的一个动点,设,过点作垂直于x轴的直线,分别交一次函数,反比例函数的图象于点A,B,过OP的中点Q作x轴的垂线,交反比例函数的图象于点C,交一次函数的图象于点当时,求ABC的面积;当a为何值时,ACF与EQF相似3、如图,在RtABC中,ACB90,点D在AB上,且(1)求证 ACDABC;(2)若AD3,BD2,求CD的长4、如图,矩形ABCD中,AB5,BC8P为边BC上一动点(不与B,C
7、重合),过P点作PEAP交直线CD于E(1)求证:ABPPCE;(2)设P点的运动速度为每秒1个单位长度,P从B点出发几秒后,CE的长度最大5、如图1,在RtABC中,ACBC5,等腰直角BDE的顶点D,E分别在边BC,AB上,且BD,将BDE绕点B按顺时针方向旋转,记旋转角为(0360)(1)问题发现当0时,的值为 ,直线AE,CD相交形成的较小角的度数为 ;(2)拓展探究试判断:在旋转过程中,(1)中的两个结论有无变化?请仅就图2的情况给出证明;(3)问题解决当BDE旋转至A,D,E三点在同一条直线上时,请直接写出ACD的面积-参考答案-一、单选题1、D【解析】【分析】由A(6,6)可知O
8、A长度为,C(-2,-2)可知OC长度为,得,所以OCD与OAB面积比为1:9.【详解】点A坐标为(6,6),OA=点C坐标为(-2,-2)OC=1:9故选:D【点睛】本题考查了两个位似图形的相似比,与相似三角形性质相同,相似三角形的面积比是相似比的平方2、D【解析】【分析】连接,由题意可证明,利用相似三角形线段成比例即可求得OC的长,再由平行线的性质即可得点的坐标【详解】解:如图,连接,轴,绕点顺时针旋转得到,点B的坐标为:,故选:D【点睛】本题考查了旋转的性质,勾股定理,相似三角形的判定与性质,平行线的性质,利用相似三角形的性质得到线段的比例是解题关键3、D【解析】【分析】根据题意和图形,
9、利用三角形相似的性质,可以计算出CD的长,从而可以解答本题【详解】解:EBAC,DCAC,EBDC,ABEACD,BE=1.5m,AB=3m,BC=7m,AC=AB+BC=10m,解得,DC=5,即建筑物CD的高是5m;故选:D【点睛】本题考查相似三角形的应用,解答本题的关键是明确题意,利用数形结合的思想解答4、D【解析】【分析】直接根据题意得出位似比,根据位似比等于相似比,进而根据面积比等于相似比的平方求得面积比【详解】解答:解:以点O为位似中心,将ABC缩小后得到ABC,BB2OB,OBOB,ABC与ABC的面积之比为:1:9故选:D【点睛】此题主要考查了位似图形的性质,正确得出位似比是解
10、题关键5、C【解析】【分析】由题意根据位似图形的性质,得出ABC与DEF是位似图形进而根据位似图形一定是相似图形得出 ABC与DEF是相似图形,再根据周长比等于位似比,以及根据面积比等于相似比的平方,即可得出答案【详解】解:根据位似的定义可得,与是位似图形,也就是特殊的相似图形,故正确;点D、E、F分别是、的中点,与的位似比为21,周长比为21,面积比为41,故错误,正确故选:C【点睛】本题主要考查位似图形的性质,熟练掌握位似图形的性质是解决问题的关键6、C【解析】【分析】根据平行线分线段成比例定理列出比例式,把已知数据代入计算即可【详解】解:ABCDEF, ,解得:DF6,故选:C【点睛】本
11、题主要是考查了平行线分线段成比例,利用平行条件,找到线段比例式,代入对应边长求解,这是解决本题的主要思路7、A【解析】【分析】根据两角对应相等,判定两个三角形相似再用相似三角形对应边的比相等进行计算求出AC的长【详解】解:AB=AC,A=36,ABC=C=72,BD平分ABC,ABD=DBC=36,BDC=ABD+A=72,BDC=C=72,AD=BD=BC=8A=DBC=36,C公共角,ABCBDC,即,整理得:AC2-8AC-64=0,解方程得:AC=4+4,或AC=4-4(舍去),故选:A【点睛】本题考查的是相似三角形的判定与性质,先用两角对应相等判定两个三角形相似,再用相似三角形的性质
12、对应边的比相等进行计算求出AC的长8、D【解析】【分析】等式两边都除以即可【详解】解:两边都除以得,故选:D【点睛】本题考查了比例的性质,解题的关键是主要利用了两内项之积等于两外项之积的性质9、B【解析】【分析】根据三角形ACE与三角形ABD相似,得到对应边成比例,建立等式求解【详解】解:由题意可得,CEBD,即解得BD8m,故选B【点睛】本题考查了相似三角形的判定与性质,在三角形中一平行线平行于第三边,则这个平行线所截的小三角形与原三角形相似,相似三角形对边边成比例10、B【解析】【分析】根据DEAC,可得BDEBAC,ODEOCA,从而得到 ,再根据相似三角形的周长比等于相似比,即可求解【
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版 九年级 数学 下册 第二 十七 相似 难点 解析 练习题 无超纲
限制150内