2022年浙教版初中数学七年级下册第四章因式分解专题攻克试题(精选).docx
《2022年浙教版初中数学七年级下册第四章因式分解专题攻克试题(精选).docx》由会员分享,可在线阅读,更多相关《2022年浙教版初中数学七年级下册第四章因式分解专题攻克试题(精选).docx(21页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、章节同步练习2022年浙教版初中数学 七年级下册知识点习题定向攻克含答案及详细解析第四章 因式分解浙教版初中数学七年级下册第四章因式分解专题攻克(2021-2022学年 考试时间:90分钟,总分100分)班级:_ 姓名:_ 总分:_题号一二三得分一、单选题(15小题,每小题3分,共计45分)1、若多项式x2mx+n可因式分解为(x+3)(x4).其中m,n均为整数,则mn的值是( )A.13B.11C.9D.72、下列各式中,因式分解正确的是( )A.B.C.D.3、若是整数,则一定能被下列哪个数整除( )A.2B.3C.5D.74、对于,从左到右的变形,表述正确的是( )A.都是因式分解B.
2、都是乘法运算C.是因式分解,是乘法运算D.是乘法运算,是因式分解5、对于,从左到右的变形,表述正确的是( )A.都是因式分解B.都是乘法运算C.是因式分解,是乘法运算D.是乘法运算,是因式分解6、多项式可以因式分解成,则的值是( )A.-1B.1C.-5D.57、下列等式中,从左往右的变形为因式分解的是()A.a2a1a(a1)B.(ab)(a+b)a2b2C.m2m1m(m1)1D.m(ab)+n(ba)(mn)(ab)8、已知cab0,若M|a(ac)|,N|b(ac)|,则M与N的大小关系是()A.MNB.MNC.MND.不能确定9、多项式的因式为( )A.B.C.D.以上都是10、小明
3、是一名密码翻译爱好者,在他的密码手册中有这样一条信息:,分别对应下列六个字:勤,博,奋,学,自,主,现将因式分解,结果呈现的密码信息应是( )A.勤奋博学B.博学自主C.自主勤奋D.勤奋自主11、把多项式x2+ax+b分解因式,得(x+3)(x4),则a,b的值分别是()A.a1,b12B.a1,b12C.a1,b12D.a1,b1212、下列多项式中有因式x1的是()x2+x2;x2+3x+2;x2x2;x23x+2A.B.C.D.13、下列各式中不能用公式法因式分解的是( )A.x24B.x24C.x2xD.x24x414、把多项式x2+mx+35进行因式分解为(x5)(x+7),则m的值
4、是()A.2B.2C.12D.1215、多项式x2y(ab)y(ba)提公因式后,余下的部分是()A.x2+1B.x+1C.x21D.x2y+y二、填空题(10小题,每小题4分,共计40分)1、6x3y23x2y3分解因式时,应提取的公因式是_2、RSA129是一个129位利用代数知识产生的数字密码曾有人认为,RSA129是有史以来最难的密码系统,涉及数论里因数分解的知识,在我们的日常生活中,取款、上网等都需要密码,有一种用“因式分解”法产生的密码方便记忆如,多项式x4y4,因式分解的结果是(xy)(x+y)(x2+y2)若取x9,y9时,则各因式的值分别是:xy0,x+y18,x2+y216
5、2,于是就可以把“018162”作为一个六位数的密码对于多项式4x3xy2,若取x10,y10,请按上述方法设计一个密码是 _(设计一种即可)3、若xz2,zy1,则x22xyy2_4、分解因式:_5、分解因式:x27xy18y2_6、已知,则的值为_7、因式分解:a3-16a=_8、若mn3,mn7,则m2nmn2_9、分解因式_10、分解因式:3x2y12xy2_三、解答题(3小题,每小题5分,共计15分)1、(1)解方程组: (2)分解因式:2、因式分解:(1)2a2b8ab2+8b3(2)a2(mn)+9(nm)(3)81x416(4)(m2+5)212(m2+5)+363、下面是多项
6、式x3+y3因式分解的部分过程,解:原式x3+x2yx2y+y3(第一步)(x3+x2y)(x2yy3)(第二步)x2(x+y)y(x2y2)(第三步)x2(x+y)y(x+y)(xy)(第四步) 阅读以上解题过程,解答下列问题:(1)在上述的因式分解过程中,用到因式分解的方法有 (至少写出两种方法)(2)在横线继续完成对本题的因式分解(3)请你尝试用以上方法对多项式8x31进行因式分解-参考答案-一、单选题1、A【分析】根据多项式与多项式的乘法法则化简(x+3)(x4),再与式x2mx+n比较求出m,n的值,代入mn计算即可.【详解】解:(x+3)(x4)=x2-4x+3x-12=x2-x-
7、12,x2mx+n= x2-x-12,m=1,n=-12,mn=1+12=13.故选A.【点睛】本题考查了因式分解,以及多项式与多项式的乘法计算,熟练掌握因式分解与乘法运算是互为逆运算的关系是解答本题的关键.2、C【分析】直接利用公式法以及提取公因式法分解因式,进而判断得出答案.【详解】解:.,故此选项不合题意;.,无法分解因式,故此选项不合题意;,故此选项符合题意;.,故此选项不合题意;故选:.【点睛】此题主要考查了提取公因式法以及公式法分解因式,正确运用提取公因式法以及公式法分解因式是解题关键.3、A【分析】根据题目中的式子,进行因式分解,根据a是整数,从而可以解答本题.【详解】解:a2+
8、a=a(a+1),a是整数,a(a+1)一定是两个连续的整数相乘,a(a+1)一定能被2整除,选项B、C、D不符合要求,所以答案选A,故选:A.【点睛】本题考查了因式分解的应用,准确理解题意并熟练掌握因式分解的方法是解题的关键.4、D【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.根据因式分解的定义判断即可.【详解】解:,属于整式乘法,不属于因式分解;,等式从左到右的变形属于因式分解;故选:D.【点睛】本题考查了整式的乘法和因式分解的定义,注意:把一个多项式化成几个整式的积的形式,叫因式分解.5、C【分析】根据因式分解和整式乘法的有关概念,对式子进
9、行判断即可.【详解】解:,从左向右的变形,将和的形式转化为乘积的形式,为因式分解;,从左向右的变形,由乘积的形式转化为和的形式,为乘法运算;故答案为C.【点睛】此题考查了因式分解和整式乘法的概念,熟练掌握有关概念是解题的关键.6、D【分析】先提公因式,然后将原多项式因式分解,可求出和 的值,即可计算求得答案.【详解】解:,.故选:.【点睛】本题考查了提公因式法分解因式,准确找到公因式是解题的关键.7、D【分析】把一个多项式化为几个整式的乘积的形式叫因式分解,根据定义对各选项进行一一分析判断即可.【详解】A. a2a1a(a1)从左往右的变形是乘积形式,但(a1)不是整式,故选项A不是因式分解;
10、B. (ab)(a+b)a2b2,从左往右的变形是多项式的乘法,故选项B不是因式分解;C. m2m1m(m1)1,从左往右的变形不是整体的积的形式,故选项C不是因式分解;D.根据因式分解的定义可知 m(ab)+n(ba)(mn)(ab)是因式分解,故选项D从左往右的变形是因式分解.故选D.【点睛】本题考查因式分解,掌握因式分解的特征从左往右的变形后各因式乘积,各因式必须为整式,各因式之间不有加减号是解题关键.8、C【分析】方法一:根据整式的乘法与绝对值化简,得到M-N=(ac)(ba)0,故可求解;方法二:根据题意可设c=-3,a=-2,b=-1,再求出M,N,故可比较求解.【详解】方法一:c
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 年浙教版 初中 数学 年级 下册 第四 因式分解 专题 攻克 试题 精选
限制150内