人教版八年级数学下册第十八章-平行四边形定向训练试题(含解析).docx
《人教版八年级数学下册第十八章-平行四边形定向训练试题(含解析).docx》由会员分享,可在线阅读,更多相关《人教版八年级数学下册第十八章-平行四边形定向训练试题(含解析).docx(33页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、人教版八年级数学下册第十八章-平行四边形定向训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在四边形中,ABCD,添加下列一个条件后,一定能判定四边形是平行四边形的是( )ABCD2、如图所示,
2、正方形ABCD的面积为16,ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PDPE的和最小,则最小值为( )A2B3C4D63、如图,的对角线交于点O,E是CD的中点,若,则的值为( )A2B4C8D164、如图,已知是平分线上的一点,是的中点,如果是上一个动点,则的最小值为( )ABCD5、如图,在中,点,分别是,上的点,点,分别是,的中点,则的长为( )A4B10C6D86、如图,在矩形ABCD中,AB=1,BC=2,将其折叠,使AB边落在对角线AC上,得到折痕AE,则点E到点B的距离为( )ABCD7、如图,四边形ABCD中,A=60,AD=2,AB=3,点M,N
3、分别为线段BC,AB上的动点(含端点,但点M不与点B重合),点E,F分别为DM,MN的中点,则EF长度的最大值为( )ABCD8、如图,在长方形ABCD中,AB6,BC8,点E是BC边上一点,将ABE沿AE折叠,使点B落在点F处,连接CF,当CEF为直角三角形时,则BE的长是( )A4B3C4或8D3或69、下列测量方案中,能确定四边形门框为矩形的是( )A测量对角线是否互相平分B测量两组对边是否分别相等C测量对角线是否相等D测量对角线交点到四个顶点的距离是否都相等10、如图,四边形ABCD是平行四边形,下列结论中错误的是( )A当ABCD是矩形时,ABC90B当ABCD是菱形时,ACBDC当
4、ABCD是正方形时,ACBDD当ABCD是菱形时,ABAC第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,平行四边形ABCD中,AB2,AD1,ADC60,将平行四边形ABCD沿过点A的直线l折叠,使点D落到AB边上的点处,折痕交CD边于点E若点P是直线l上的一个动点,则+PB的最小值_2、如图,正方形ABCD的面积为18,ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为 _3、如图,已知在矩形中,将沿对角线AC翻折,点B落在点E处,连接,则的长为_4、如图,矩形ABCD中,AB9,AD12,点M在对角线BD
5、上,点N为射线BC上一动点,连接MN,DN,且DNMDBC,当DMN是等腰三角形时,线段BN的长为_5、如图,在直角三角形ABC中,B=90,点D是AC边上的一点,连接BD,把CBD沿着BD翻折,点C落在AB边上的点E处,得到EBD,连接CE交BD于点F,BG为EBD的中线若BC=4,EBG的面积为3,则CD的长为_三、解答题(5小题,每小题10分,共计50分)1、(探究发现)(1)如图1,ABC中,ABAC,BAC90,点D为BC的中点,E、F分别为边AC、AB上两点,若满足EDF90,则AE、AF、AB之间满足的数量关系是 (类比应用)(2)如图2,ABC中,ABAC,BAC120,点D为
6、BC的中点,E、F分别为边AC、AB上两点,若满足EDF60,试探究AE、AF、AB之间满足的数量关系,并说明理由(拓展延伸)(3)在ABC中,ABAC5,BAC120,点D为BC的中点,E、F分别为直线AC、AB上两点,若满足CE1,EDF60,请直接写出AF的长2、在如图所示的43网格中,每个小正方形的边长均为1,正方形顶点叫格点,连接两个网格格点的线段叫网格线段点A固定在格点上(1)若a是图中能用网格线段表示的最小无理数,b是图中能用网格线段表示的最大无理数,则a ,b , ;(2)请在网格中画出顶点在格点上且边长为的所有菱形ABCD,你画出的菱形面积分别为 , 3、如图,已知ABC中,
7、D是AB上一点,ADAC,AECD,垂足是E,F是BC的中点,求证:BD2EF4、综合与实践(1)如图1,在正方形ABCD中,点M、N分别在AD、CD上,若MBN45,则MN,AM,CN的数量关系为 (2)如图2,在四边形ABCD中,BCAD,ABBC,A+C180,点M、N分别在AD、CD上,若MBNABC,试探索线段MN、AM、CN有怎样的数量关系?请写出猜想,并给予证明(3)如图3,在四边形ABCD中,ABBC,ABC+ADC180,点M、N分别在DA、CD的延长线上,若MBNABC,试探究线段MN、AM、CN的数量关系为 5、如图,已知在RtABC中,ACB90,CD是斜边AB上的中线
8、,点E是边BC延长线上一点,连接AE、DE,过点C作CFDE于点F,且DFEF (1)求证:ADCE (2)若CD5,AC6,求AEB的面积-参考答案-一、单选题1、C【解析】【分析】由平行线的性质得,再由,得,证出,即可得出结论【详解】解:一定能判定四边形是平行四边形的是,理由如下:,又,四边形是平行四边形,故选:C【点睛】本题考查了平行四边形的判定,解题的关键是熟练掌握平行四边形的判定,证明出2、C【解析】【分析】先求得正方形的边长,依据等边三角形的定义可知BE=AB=4,连接BP,依据正方形的对称性可知PB=PD,则PE+PD=PE+BP由两点之间线段最短可知:当点B、P、E在一条直线上
9、时,PE+PD有最小值,最小值为BE的长【详解】解:连接BP四边形ABCD为正方形,面积为16,正方形的边长为4ABE为等边三角形,BE=AB=4四边形ABCD为正方形,ABP与ADP关于AC对称BP=DPPE+PD=PE+BP由两点之间线段最短可知:当点B、P、E在一条直线上时,PE+PD有最小值,最小值=BE=4故选:C【点睛】本题考查的是等边三角形的性质、正方形的性质和轴对称最短路线问题,熟知“两点之间,线段最短”是解答此题的关键3、B【解析】【分析】根据平行四边形的性质可得,SBOC=SAOD=SCOD=SAOB=8,再根据三角形的中线平分三角形的面积可得根据三角形的中线平分三角形的面
10、积可得SDOE=4,进而可得答案【详解】解:四边形ABCD是平行四边形,SBOC=SAOD=SCOD=SAOB=8,点E是CD的中点,SDOE=SCOD=4,故选:B【点睛】此题主要考查了平行四边形的性质,以及三角形中线的性质,掌握平行四边形的性质,三角形的中线平分三角形的面积是解答本题的关键4、C【解析】【分析】根据题意由角平分线先得到是含有角的直角三角形,结合直角三角形斜边上中线的性质进而得到OP,DP的值,再根据角平分线的性质以及垂线段最短等相关内容即可得到PC的最小值【详解】解:点P是AOB平分线上的一点,PDOA,M是OP的中点,点C是OB上一个动点当时,PC的值最小,OP平分AOB
11、,PDOA,最小值,故选C【点睛】本题主要考查了角平分线的性质、含有角的直角三角形的选择,直角三角形斜边上中线的性质、垂线段最短等相关内容,熟练掌握相关性质定理是解决本题的关键5、B【解析】【分析】根据三角形中位线定理得到PD=BF=6,PDBC,根据平行线的性质得到PDA=CBA,同理得到PDQ=90,根据勾股定理计算,得到答案【详解】解:C=90,CAB+CBA=90,点P,D分别是AF,AB的中点,PD=BF=6,PD/BC,PDA=CBA,同理,QD=AE=8,QDB=CAB,PDA+QDB=90,即PDQ=90,PQ=10,故选:B【点睛】本题考查的是三角形中位线定理、勾股定理,掌握
12、三角形的中位线平行于第三边,且等于第三边的一半是解题的关键6、C【解析】【分析】由于AE是折痕,可得到AB=AF,BE=EF,再求解设BE=x,在RtEFC中利用勾股定理列出方程,通过解方程可得答案【详解】解: 矩形ABCD, 设BE=x, AE为折痕, AB=AF=1,BE=EF=x,AFE=B=90, RtABC中,RtEFC中,EC=2-x, , 解得:, 则点E到点B的距离为: 故选:C【点睛】本题考查了勾股定理和矩形与折叠问题;二次根式的乘法运算,利用对折得到,再利用勾股定理列方程是解本题的关键7、A【解析】【分析】根据三角形的中位线定理得出EF=DN,从而可知DN最大时,EF最大,
13、因为N与B重合时DN最大,此时根据勾股定理求得DN,从而求得EF的最大值 连接DB,过点D作DHAB交AB于点H,再利用直角三角形的性质和勾股定理求解即可;【详解】解:ED=EM,MF=FN, EF=DN, DN最大时,EF最大, N与B重合时DN=DB最大,在RtADH中, A=60 AH=2=1,DH=,BH=ABAH=31=2, DB=, EFmax=DB=, EF的最大值为故选A【点睛】本题考查了三角形的中位线定理,勾股定理,含30度角的直角三角形的性质,利用中位线求得EF=DN是解题的关键8、D【解析】【分析】当为直角三角形时,有两种情况:当点F落在矩形内部时连接,先利用勾股定理计算
14、出,根据折叠的性质得,而当为直角三角形时,只能得到,所以点A、F、C共线,即沿折叠,使点B落在对角线上的点F处,则,可计算出然后利用勾股定理求解即可;当点F落在边上时此时为正方形,由此即可得到答案【详解】解:当为直角三角形时,有两种情况:当点F落在矩形内部时,如图所示连接,在中,ABE沿折叠,使点B落在点F处,BE=EF,当为直角三角形时,只能得到,点A、F、C共线,即ABE沿折叠,使点B落在对角线上的点F处,设BE=EF=x,则EC=BC-BE=8-x,解得,BE=3;当点F落在边上时,如图所示,由折叠的性质可知AB=AF,BE=EF,AEF=B=90,FEC=90,为正方形,综上所述,BE
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版 八年 级数 下册 第十八 平行四边形 定向 训练 试题 解析
限制150内