2022年强化训练北师大版九年级数学下册第二章二次函数定向测试试题(含答案解析).docx
《2022年强化训练北师大版九年级数学下册第二章二次函数定向测试试题(含答案解析).docx》由会员分享,可在线阅读,更多相关《2022年强化训练北师大版九年级数学下册第二章二次函数定向测试试题(含答案解析).docx(32页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、北师大版九年级数学下册第二章二次函数定向测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在平面直角坐标系中,点M的坐标为(m,m2 - bm),b为常数且b 3若m2 - bm 2 - b,m ,则点
2、M的横坐标m的取值范围是 ( )A0 m Bm C m Dm 2 - b,得到m2 - bm - 2 +b=0,因式分解得,进而判断出,故当m2 - bm - 2 +b0时,或,再由,且,可知无解,即可求解.【详解】m2 - bm 2 - b, m2 - bm - 2 +b0,令m2 - bm - 2 +b=0,则,则或,解得:,二次函数y= x2 - bx - 2 +b,开口向上,与x轴交点为x1,x2,(且x10时,xx2,令x=m,则y= m2 - bm - 2 +b=0,解得,即,当m2 - bm - 2 +b0时,或,则,且,无解,故选:B【点睛】此题考查了因式分解法解一元二次方程,
3、二次函数的图象的性质,对进行取值范围的确定是解答此题的关键.2、C【分析】根据二次函数图象的开口方向、对称轴、顶点坐标、增减性以及二次函数与一元二次方程的关系,逐项判断即可【详解】解:抛物线开口向下,因此a0,对称轴为x=10,因此a、b异号,所以b0,抛物线与y轴交点在正半轴,因此c0,所以abc0,故正确;当x=2时,y=4a+2b+c0,故正确;抛物线与x轴交点(3,0),对称轴为x=1因此另一个交点坐标为(-1,0),所以a-b+c=0,又x=-=1,有2a+b=0,所以3a+c=0,而a0,c0,因此2a+c0,故不正确;由cx2+bx+a=0可得方程的解为和,抛物线与x轴交点(3,
4、0),(-1,0),即方程ax2+bx+c=0的两根为x1=3,x2=-1;, 当时, 3a+c=0,c=-3a,cx2+bx+a=0的两根,x2=-1,故正确;抛物线y=ax2+bx+c与x轴交点(3,0),(-1,0),且a0,因此当y=-2时,相应的x的值大于3,或者小于-1,即m-1,n3,故正确;综上所述,正确的结论有:共4个,故选:C【点睛】本题考查二次函数的图象和性质,掌握二次函数的a、b、c的值决定抛物线的位置是正确判断的关键3、A【分析】根据抛物线的平移规律:上加下减,左加右减解答即可【详解】解:将抛物线yx2向上平移3个单位长度得到的抛物线是故选:A【点睛】本题考查了二次函
5、数图象的平移,理解平移规律是解题的关键4、B【分析】当时,根据不等式的性质求解即可证明;当时,二次函数的对称轴为:,分三种情况讨论:当时;当时;当时;分别利用二次函数的的最值问题讨论证明即可得;当,时,分别求出相应的y的值,然后将时,y的值变形为:,将各个不等式代入即可得证【详解】解:当时, ,即,正确;当时,二次函数的对称轴为:,当时,即时,函数在处取得最小值,即,函数在处取得最大值,即,二者矛盾,这种情况不存在;当时,即时,函数在处取得最小值,即,当时,即时,时,;时,不符合题意,舍去;当时,即时,时,;时,不符合题意,舍去;,当时,即时,函数在处取得最小值,即,函数在处取得最大值,即,二
6、者矛盾,这种情况不存在;综上可得:;故错误;当时,且;当时,且;当时,且;当时,当时,y可以取到的最大值为7;正确;故选:B【点睛】题目主要考查二次函数的基本性质及不等式的性质,熟练掌握不等式的性质是解题关键5、B【分析】根据两抛物线的顶点坐标即可确定平移的方向与距离,从而完成解答【详解】抛物线的顶点为(4,1),而抛物线的顶点为原点由题意,把抛物线的顶点先向右平移4个单位,再向上平移1个单位,即可得到抛物线的顶点,从而抛物线先向右平移4个单位,再向上平移1个单位即可得到故选:B【点睛】本题考查了二次函数图象的平移,关键是抓住抛物线顶点的平移6、C【分析】由抛物线开口向上得a0,由抛物线的对称
7、轴为直线x=-0得b0,判断;由抛物线与y轴的交点在x轴上方得c0判断,利用图象将x=1,-1,2代入函数解析式判断y的值,进而对所得结论进行判断【详解】解:抛物线开口向上,a0,抛物线的对称轴x=-0,b0,-1,2a-b,2a-b-2b,b0,-2b0,即2a-b0,故错误;抛物线与y轴的交点在x轴下方,c0,故正确;当x=2时,y=4a+2b+c0,故正确,故错误的有3个故选:C【点睛】本题考查了二次函数图象与系数的关系,熟练利用数形结合得出是解题关键7、B【分析】先求出平移后的抛物线的顶点坐标,再利用顶点式抛物线解析式写出即可【详解】抛物线的顶点坐标为,向左平移1个单位,向下平移1个单
8、位后的抛物线的顶点坐标为,平移后的抛物线的解析式为故选:B【点睛】本题考查了二次函数图象与几何变换,根据规律利用点的变化确定函数解析式是解题的关键8、A【分析】抛物线的移动主要看顶点的移动,的顶点是, 的顶点是,的顶点是 ,的顶点是 先确定抛物线顶点坐标是原点,然后根据向右平移,横坐标加,向上平移纵坐标加,求出平移后的抛物线的顶点坐标,再根据平移变换不改变图形的形状,利用顶点式写出即可抛物线的平移口诀:自变量加减:左加右减,函数值加减:上加下减【详解】解:抛物线的顶点坐标为(0,0),向右平移2个单位,再向上平移3个单位,平移后的顶点坐标为(2,3),平移后的抛物线解析式为故选:A【点睛】本题
9、考查了二次函数图象的平移,根据顶点的变化确定函数的变化,要熟记平移规律“左加右减,上加下减”9、B【分析】将二次函数配方成顶点式,分m-2、m1和-2m1三种情况,根据y的最小值为-2,结合二次函数的性质求解可得【详解】解:y=x2-2mx=(x-m)2-m2, 若m-2,当x=-2时取得最小值,此时y=4+4m=-2, 解得:m=; m=-2(舍去); 若m1,当x=1时取得最小值,y=1-2m=-2, 解得:m=; 若-2m1,当x=m时取得最小值,y=-m2=-2, 解得:或(舍), m的值为 或, 故选:B【点睛】本题主要考查二次函数的最值,根据二次函数的增减性分类讨论是解本题的关键1
10、0、B【分析】根据二次函数顶点式的特征计算即可;【详解】抛物线,顶点坐标为(1,2);故选B【点睛】本题主要考查了二次函数图象顶点式的图象性质,准确分析计算是解题的关键二、填空题1、(-5,0)【分析】先确定抛物线的对称轴,然后利用二次函数的对称性确定抛物线与x轴的另一个交点坐标【详解】解:抛物线的对称轴为直线,而抛物线与x轴的一个交点为(-1,0),所以抛物线与x轴的另一个交点为(-5,0)故答案为:(-5,0)【点睛】本题考查了抛物线与x轴的交点,解答本题的关键是求出抛物线图象的对称轴,利用对称知识进行解答,此题难度不大2、【分析】由解析式是二次函数可知 ,再由图像的开口向上得,由此求解即
11、可【详解】解:是二次函数,解得,图像的开口向上,即,故答案为:【点睛】本题考查了二次函数的定义与二次函数图像的性质,熟知 图像开口向上时,a0,图像开口向下时,a0是解题的关键3、【分析】设抛物线与x轴的交点为(x1,0)和(x2,0),根据一元二次方程的判别式和根与系数的关系解答即可【详解】解:由于抛物线与x轴的两个交点在点(1,0)两旁,故设抛物线与x轴的交点为(x1,0)和(x2,0),则x1、x2是一元二次方程有两个不相等的实数根,x1+x2=m, x1x2=m2,由题意,得:即,解得:,故答案为:【点睛】本题考查抛物线与x轴的交点问题、一元二次方程的根与系数关系、一元二次方程根的判别
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 强化 训练 北师大 九年级 数学 下册 第二 二次 函数 定向 测试 试题 答案 解析
限制150内