《2022年浙教版初中数学七年级下册第四章因式分解专题测评.docx》由会员分享,可在线阅读,更多相关《2022年浙教版初中数学七年级下册第四章因式分解专题测评.docx(20页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、初中数学七年级下册第四章因式分解专题测评(2021-2022学年 考试时间:90分钟,总分100分)班级:_ 姓名:_ 总分:_题号一二三得分一、单选题(15小题,每小题3分,共计45分)1、下列等式从左到右的变形,属于因式分解的是( )A.a2b2(ab)(ab)B.a(xy)axayC.x22x1x(x2)1D.(x1)(x3)x24x32、下列各式由左到右的变形中,属于因式分解的是( ).A.B.C.D.3、多项式x2y(ab)y(ba)提公因式后,余下的部分是()A.x2+1B.x+1C.x21D.x2y+y4、对于有理数a,b,c,有(a+100)b(a+100)c,下列说法正确的是
2、()A.若a100,则bc0B.若a100,则bc1C.若bc,则a+bcD.若a100,则abc5、已知,那么的值为( )A.3B.6C.D.6、下列各式从左到右的变形,属于因式分解的是()A.ab+bc+bb(a+c)+bB.a29(a+3)(a3)C.(a1)2+(a1)a2aD.a(a1)a2a7、若x2+mx+n分解因式的结果是(x2)(x+1),则m+n的值为()A.3B.3C.1D.18、下列分解因式的变形中,正确的是( )A.xy(xy)x(yx)x(yx)(y1)B.6(ab)22(ab)(2ab)(3ab1)C.3(nm)22(mn)(nm)(3n3m2)D.3a(ab)2
3、(ab)(ab)2(2ab)9、下列因式分解正确的是( )A.3p2-3q2=(3p+3q)(p-q)B.m4-1=(m2+1)(m2-1)C.2p+2q+1=2(p+q)+1D.m2-4m+4=(m-2)210、下列因式分解正确的是()A.x29(x3)(x3)B.x2x6(x2)(x3)C.3x6y33(x2y)D.x22x1(x1)211、下列各式从左到右的变形,属于因式分解的是( )A.B.C.D.12、已知,则的值为( )A.0和1B.0和2C.0和-1D.0或113、下列各式中,由左向右的变形是分解因式的是( )A.B.C.D.14、小明是一名密码翻译爱好者,在他的密码手册中有这样
4、一条信息:,分别对应下列六个字:勤,博,奋,学,自,主,现将因式分解,结果呈现的密码信息应是( )A.勤奋博学B.博学自主C.自主勤奋D.勤奋自主15、下列各式中,不能用完全平方公式分解的个数为( );.A.1个B.2个C.3个D.4个二、填空题(10小题,每小题4分,共计40分)1、若多项式9x2+kxy+4y2能用完全平方公式进行因式分解,则k_2、分解因式:xy3x+y3_3、已知二次三项式x2+px+q因式分解的结果是(x3)(x5),则p+q=_4、已知ab5,ab2,则a2b+ab2_5、分解因式:x2y6xy9y_6、分解因式:_7、已知,则_8、因式分解:_9、因式分解:_10
5、、因式分解:_三、解答题(3小题,每小题5分,共计15分)1、因式分解:(1)2a2b8ab2+8b3(2)a2(mn)+9(nm)(3)81x416(4)(m2+5)212(m2+5)+362、分解因式:(1)(2)(3)3、因式分解:(1);(2)-参考答案-一、单选题1、A【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.根据因式分解的定义逐一判断即可得答案.【详解】A、a2b2(ab)(ab),把一个多项式化为几个整式的积的形式,属于因式分解,故此选项符合题意;B、a(xy)axay,是整式的乘法,不是因式分解,故此选项不符合题意;C、x22
6、x1x(x2)1,没把一个多项式化为几个整式的积的形式,不是因式分解,故此选项不符合题意;D、(x1)(x3)x24x3,是整式的乘法,不是因式分解,故此选项不符合题意;故选:A.【点睛】本题考查了因式分解的定义,把一个多项式化成几个整式的积的形式,叫因式分解;熟练掌握定义是解题关键.2、C【分析】根据因式分解是把一个多项式转化成几个整式积,可得答案.【详解】解:A、是整式的乘法,故A不符合;B、没把一个多项式转化成几个整式积,故B不符合;C、把一个多项式转化成几个整式积,故C符合;D、没把一个多项式转化成几个整式积,故D不符合;故选:C.【点睛】本题考查了因式分解的意义,因式分解是把一个多项
7、式转化成几个整式积.3、A【详解】直接提取公因式y(ab)分解因式即可.【解答】解:x2y(ab)y(ba)x2y(ab)+y(ab)y(ab)(x2+1).故选:A.【点睛】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.4、A【分析】将等式移项,然后提取公因式化简,根据乘法等式的性质,求解即可得.【详解】解:,或,即:或,A选项中,若,则正确;其他三个选项均不能得出,故选:A.【点睛】题目主要考查利用因式分解化简等式,熟练掌握因式分解的方法是解题关键.5、D【分析】根据完全平方公式求出,再把原式因式分解后可代入求值.【详解】解:因为,所以,所以故选:D【点睛】考核知识点:因式
8、分解的应用.灵活应用完全平方公式进行变形是解题的关键.6、B【分析】根据因式分解的定义逐项排查即可.【详解】解:根据因式分解的定义可知:A、C、D都不属于因式分解,只有B属于因式分解.故选B.【点睛】本题主要考查了因式分解的定义,把一个多项式化为几个最简整式的乘积的形式,这种变形叫做把这个因式分解.7、A【分析】先根据多项式乘以多项式法则进行计算,再根据已知条件求出m、n的值,最后求出答案即可.【详解】解:(x2)(x+1)x2+x2x2x2x2,二次三项式x2+mx+n可分解为(x2)(x+1),m1,n2,m+n1+(2)3,故选:A.【点睛】本题考查了多项式乘以多项式法则和分解因式,能够
9、理解分解因式和多项式乘多项式是互逆运算是解决本题的关键.8、A【分析】按照提取公因式的方式分解因式,同时注意分解因式后的结果,一般而言每个因式中第一项的系数为正.【详解】解:A、xy(x-y)-x(y-x)=-x(y-x)(y+1),故本选项正确;B、6(a+b)2-2(a+b)=2(a+b)(3a+3b-1),故本选项错误;C、3(n-m)2+2(m-n)=(n-m)(3n-3m-2),故本选项错误;D、3a(a+b)2-(a+b)=(a+b)(3a2+3ab-1),故本选项错误.故选:A.【点睛】本题考查提公因式法分解因式.准确确定公因式是求解的关键.9、D【分析】利用提取公因式法、平方差
10、公式和完全平方公式法分别因式分解分析得出答案.【详解】解:选项A:3p23q23(p2q2)3(pq)(pq),不符合题意;选项B:m41(m21)(m21)m41(m21)(m1)(m1),不符合题意;选项C:2p2q1不能进行因式分解,不符合题意;选项D:m24m4(m2)2,符合题意.故选:D.【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.10、B【分析】利用公式法对A、D进行判断;根据十字相乘法对B进行判断;根据提公因式对C进行判断.【详解】解:A、x29不能分解,所以A选项不符合题意;B、x2x6(x2)(x3),所以B选项符合题意;C、3x6
11、y33(x2y1),所以C选项不符合题意;D、x22x1在有理数范围内不能分解,所以D选项不符合题意.故选:B.【点睛】本题考查了因式分解十字相乘法等:对于x2(pq)xpq型的式子的因式分解.这类二次三项式的特点是:二次项的系数是1;常数项是两个数的积;可以直接将某些二次项的系数是1的二次三项式因式分解:x2(pq)xpq(xp)(xq).11、B【分析】根据因式分解是把一个多项式转化成几个整式乘积的形式,可得答案.【详解】解:A、是把一个单项式转化成两个单项式乘积的形式,故A错误;B、把一个多项式转化成三个整式乘积的形式,故B正确;C、是把一个多项式转化成一个整式和一个分式乘积的形式,故C
12、错误;D、是整式的乘法,故D错误;故选:B.【点睛】本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式乘积的形式,注意因式分解与整式的乘法的区别.12、B【分析】根据已知条件得出(x-1)3-(x-1)=0,再通过因式分解求出x的值,然后代入要求的式子进行计算即可得出答案.【详解】解:,x-1=(x-1)3,(x-1)3-(x-1)=0,(x-1)(x-1)2-1=0,(x-1)(x-1+1)(x-1-1)=0,x(x-1)(x-2)=0,x1=0,x2=1,x3=2,x2-x=0或x2-x=12-1=0或x2-x=22-2=2,故选:B.【点睛】此题考查了立方根,因式分解的应用,
13、解题的关键是通过式子变形求出x的值.13、B【分析】判断一个式子是否是因式分解的条件是等式的左边是一个多项式,等式的右边是几个整式的积,左、右两边相等,根据以上条件进行判断即可.【详解】解:A、,不是因式分解;故A错误;B、,是因式分解;故B正确;C、,故C错误;D、,不是因式分解,故D错误;故选:B.【点睛】本题考查了因式分解的意义,把多项式转化成几个整式积的形式是解题关键.14、A【分析】将式子先提取公因式再用平方差公式因式分解可得:(x2-y2)a2-(x2-y2)b2=(x2-y2)(a2-b2)=(x+y)(x-y)(a+b)(a-b),再结合已知即可求解.【详解】解:(x2-y2)
14、a2-(x2-y2)b2=(x2-y2)(a2-b2)=(x+y)(x-y)(a+b)(a-b),由已知可得:勤奋博学,故选:A.【点睛】本题考查了因式分解的应用;将已知式子进行因式分解,再由题意求是解题的关键.15、C【分析】分别利用完全平方公式分解因式得出即可.【详解】解:x2-10x+25=(x-5)2,不符合题意;4a2+4a-1不能用完全平方公式分解;x2-2x-1不能用完全平方公式分解;m2+m=-(m2-m+)=-(m-)2,不符合题意;4x4x2+不能用完全平方公式分解.故选:C.【点睛】此题主要考查了完全平方公式的应用,熟练掌握完全平方公式的形式是解题关键.二、填空题1、12
15、.【分析】先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定k的值.【详解】解:9x2+kxy+4y2(3x)2+kxy +(2y)2,kxy23x2y12xy,解得k12.故答案为:12.【点睛】本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,也是难点,熟记完全平方公式对解题非常重要.2、(y3)(x+1)【分析】直接利用分组分解法、提取公因式法分解因式得出答案.【详解】解:xy3x+y3x(y3)+(y3)(y3)(x+1).故答案为:(y3)(x+1).【点睛】本题主要考查了利用提取公因式的方法分解因式,解题的关键在于能够熟练掌握提公因式的方法分解因式.
16、3、7【分析】利用多项式乘以多项式法则,以及多项式相等的条件求出、的值,再代入计算可得.【详解】解:根据题意得:,则.故答案是:7.【点睛】此题考查了因式分解十字相乘法,熟练掌握运算法则是解本题的关键.4、10【分析】先用提公因式法将a2b+ab2变形为ab(ab),然后代值计算即可得到答案.【详解】解:a2b+ab2ab(a+b)ab(ab).ab5,ab2,a2b+ab2ab(ab)5(2)10.故答案为:10.【点睛】本题主要考查了用提公因式法因式分解,解题的关键在于能够熟练掌握因式分解的方法.5、【分析】根据因式分解的方法求解即可.分解因式的方法有:提公因式法,平方差公式法,完全平方公
17、式法,十字相乘法等.【详解】解:x2y6xy9y故答案为:.【点睛】此题考查了分解因式,解题的关键是熟练掌握分解因式的方法.分解因式的方法有:提公因式法,平方差公式法,完全平方公式法,十字相乘法等.6、#【分析】根据完全平方公式进行因式分解即可.【详解】解:原式,故答案为:.【点睛】本题考查了根据完全平方公式因式分解性,掌握完全平方公式是解题的关键.7、【分析】根据题意平方差公式进行计算即可求得答案.【详解】解:.故答案为:.【点睛】本题考查平方差公式,熟练掌握平方差公式是解题的关键.8、a(a+1)(a-1)【分析】先找出公因式,然后提取公因式,再利用平方差公式分解因式即可.【详解】解:故答
18、案为:.【点睛】本题考查了用提公因式法分解因式,准确找出公因式是解题的关键.9、【分析】先分组,然后根据公式法因式分解.【详解】.故答案为:.【点睛】本题考查了分组分解法,公式法分解因式,掌握因式分解的方法是解题的关键.10、【分析】根据十字相乘法分解即可.【详解】解:=,故答案为:.【点睛】本题考查了因式分解,熟练掌握十字相乘法是解题的关键.三、解答题1、(1)2b(a-2b) 2;(2)(mn)( a+3)(a-3);(3)(3x+2)(3x-2)(9x2+4);(4)(m+1)2(m-1)2【分析】(1)先提取2b,再利用完全平方公式分解因式即可;(2)先提取(mn),再利用平方差公式分
19、解因式即可;(3)利用平方差公式分解因式,即可;(4)先用完全平方公式分解因式,再用平方差公式分解因式即可.【详解】解:(1)原式=2b(a2-4ab+4b2)=2b(a2-4ab+4b2)=2b(a-2b) 2;(2)原式=a2(mn)-9(mn)=(mn)( a2-9)=(mn)( a+3)(a-3);(3)原式=(9x24)(9x2+4)=(3x+2)(3x-2)(9x2+4);(4)原式=(m2+5)-62=(m2-1)2=(m+1)2(m-1)2.【点睛】本题主要考查分解因式,熟练掌握提取公因式法和公式法分解因式,是解题的关键.2、(1);(2);(3)【分析】(1)直接提公因式n即可分解;(2)直接利用平方差公式分解;(3)先利用平方差公式分解,再利用完全平方公式分解.【详解】解:(1)=;(2)=;(3)=【点睛】本题考查提公因式法、公式法分解因式,掌握平方差公式、完全平方公式的结构特征是正确应用的前提.3、(1);(2)【分析】(1)直接运用平方差公式进行分解即可;(2)先提取公因式,然后运用完全平方公式因式分解即可.【详解】解:(1)原式= ;(2)原式= =.【点睛】本题考查了公式法因式分解以及提公因式法因式分解,熟练掌握乘法公式的结构特点是解本题的关键.
限制150内