2022年最新沪科版九年级数学下册期末综合复习-卷(Ⅱ)(含答案详解).docx
《2022年最新沪科版九年级数学下册期末综合复习-卷(Ⅱ)(含答案详解).docx》由会员分享,可在线阅读,更多相关《2022年最新沪科版九年级数学下册期末综合复习-卷(Ⅱ)(含答案详解).docx(32页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 线 封 密 内 号学级年名姓 线 封 密 外 沪科版九年级数学下册期末综合复习 卷() 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,AB是的直径,CD是的弦,且,则图中阴影部分的面积为( )AB
2、CD2、下表记录了一名球员在罚球线上投篮的结果:投篮次数50100150200250400500800投中次数286387122148242301480投中频率0.5600.6300.5800.6100.5920.6050.6020.600根据频率的稳定性,估计这名球员投篮一次投中的概率约是( )A0.560B0.580C0.600D0.6203、如图,AB是的直径,弦CD交AB于点P,则CD的长为( )ABCD84、如图,与的两边分别相切,其中OA边与相切于点P若,则OC的长为( )A8BCD5、如图,为正六边形边上一动点,点从点出发,沿六边形的边以1cm/s的速度按逆时针方向运动,运动到点
3、停止设点的运动时间为,以点、为顶点的三角形的面积是,则下列图像能大致反映与的函数关系的是( ) 线 封 密 内 号学级年名姓 线 封 密 外 ABCD6、下列事件为必然事件的是()A明天要下雨Ba是实数,|a|0C34D打开电视机,正在播放新闻7、如图,点P是等边三角形ABC内一点,且PA3,PB4,PC5,则APB的度数是( )A90B100C120D1508、如图,将一个棱长为3的正方体表面涂上颜色,把它分割成棱长为1的小正方体,将它们全部放入一个不透明盒子中摇匀,随机取出一个小正方体,有三个面被涂色的概率为( )ABCD9、扇形的半径扩大为原来的3倍,圆心角缩小为原来的,那么扇形的面积(
4、 )A不变B面积扩大为原来的3倍C面积扩大为原来的9倍D面积缩小为原来的10、如图,是ABC的外接圆,已知,则的大小为( )A55B60C65D75第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,把ABC绕点C顺时针旋转某个角度得到,A30,170,则旋转角的度数为_2、一个五边形共有_条对角线3、某农科所为了深入践行“绿水青山就是金山银山”的理念,大力开展对植物生长的研究,该农科所在相同条件下做某植物种子发芽率的试验,得到的结果如下表所示:种子个数1002003004005006007008009001000 线 封 密 内 号学级年名姓 线 封 密 外 发芽种
5、子个数94188281349435531625719812902发芽种子频率(结果保留两位小数)0.940.940.940.870.870.890.890.900.900.90根据频率的稳定性,估计这种植物种子不发芽的概率是_4、如图,把分成相等的六段弧,依次连接各分点得到正六边形ABCDEF,如果的周长为,那么该正六边形的边长是_5、如图,在中,绕点B顺时针方向旋转45得到,点A经过的路径为弧,点C经过的路径为弧,则图中阴影部分的面积为_(结果保留)三、解答题(5小题,每小题10分,共计50分)1、正方形绿化场地拟种植两种不同颜色(用阴影部分和非阴影部分表示)的花卉,要求种植的花卉能组成轴对
6、称或中心对称图案,下面是三种不同设计方案中的一部分(1)请把图、图补成既是轴对称图形,又是中心对称图形,并画出一条对称轴;(2)把图补成只是中心对称图形,并把中心标上字母P2、综合与实践“利用尺规作图三等分一个任意角”曾是数学史上一大难题,之后被数学家证明是不可能完成的人们根据实际需要,发明了一种简易操作工具三分角器图1是它的示意图,其中与半圆的直径在同一直线上,且的长度与半圆的半径相等;与垂直于点,足够长使用方法如图2所示,若要把三等分,只需适当放置三分角器,使经过的顶点,点落在边上,半圆与另一边恰好相切,切点为,则,就把三等分了为了说明这一方法的正确性,需要对其进行证明独立思考:(1)如下
7、给出了不完整的“已知”和“求证”,请补充完整已知:如图2,点,在同一直线上,垂足为点,_,切半圆于求证:_探究解决:(2)请完成证明过程应用实践:(3)若半圆的直径为,求的长度 线 封 密 内 号学级年名姓 线 封 密 外 3、如图,四边形ABCD是正方形ABE是等边三角形,M为对角线 BD(不含B,D点)上任意一点,将线段BM绕点B逆时针旋转60得到BN,连接 EN,AM、CM请判断线段 AM 和线段 EN 的数量关系,并说明理由4、定理:一条弧所对的圆周角等于这条弧所对的圆心角的一半如图1,AO已知:如图2,AC是O的一条弦,点D在O上(与A、C不重合),联结DE交射线AO于点E,联结OD
8、,O的半径为5,tanOAC(1)求弦AC的长(2)当点E在线段OA上时,若DOE与AEC相似,求DCA的正切值(3)当OE1时,求点A与点D之间的距离(直接写出答案)5、如图,AB是O的直径,点D,E在O上,四边形BDEO是平行四边形,过点D作交AE的延长线于点C(1)求证:CD是O的切线(2)若,求阴影部分的面积-参考答案-一、单选题1、C【分析】如图,连接OC,OD,可知是等边三角形,计算求解即可【详解】解:如图连接OC,OD是等边三角形 线 封 密 内 号学级年名姓 线 封 密 外 由题意知,故选C【点睛】本题考查了扇形的面积,等边三角形等知识解题的关键在于用扇形表示阴影面积2、C【分
9、析】根据频率估计概率的方法并结合表格数据即可解答.【详解】解:由频率分布表可知,随着投篮次数越来越大时,频率逐渐稳定到常数0.600附近,这名球员在罚球线上投篮一次,投中的概率为0.600.故选:C.【点睛】本题主要考查了利用频率估计概率,概率的得出是在大量实验的基础上得出的,不能单纯的依靠几次决定.3、A【分析】过点作于点,连接,根据已知条件即可求得,根据含30度角的直角三角形的性质即可求得,根据勾股定理即可求得,根据垂径定理即可求得的长【详解】解:如图,过点作于点,连接, AB是的直径,在中,故选A【点睛】本题考查了勾股定理,含30度角的直角三角形的性质,垂径定理,掌握以上定理是解题的关键
10、4、C【分析】如图所示,连接CP,由切线的性质和切线长定理得到CPO=90,COP=45,由此推出CP=OP=4,再根据勾股定理求解即可【详解】解:如图所示,连接CP,OA,OB都是圆C的切线,AOB=90,P为切点, 线 封 密 内 号学级年名姓 线 封 密 外 CPO=90,COP=45,PCO=COP=45,CP=OP=4,故选C【点睛】本题主要考查了切线的性质,切线长定理,等腰直角三角形的性质与判定,勾股定理,熟知切线长定理是解题的关键5、A【分析】设正六边形的边长为1,当在上时,过作于 而 求解此时的函数解析式,当在上时,延长交于点 过作于 并求解此时的函数解析式,当在上时,连接 并
11、求解此时的函数解析式,由正六边形的对称性可得:在上的图象与在上的图象是对称的,在上的图象与在上的图象是对称的,从而可得答案.【详解】解:设正六边形的边长为1,当在上时,过作于 而 当在上时,延长交于点 过作于 同理: 则为等边三角形, 当在上时,连接 线 封 密 内 号学级年名姓 线 封 密 外 由正六边形的性质可得: 由正六边形的对称性可得: 而 由正六边形的对称性可得:在上的图象与在上的图象是对称的,在上的图象与在上的图象是对称的,所以符合题意的是A,故选A【点睛】本题考查的是动点问题的函数图象,锐角三角函数的应用,正多边形的性质,清晰的分类讨论是解本题的关键.6、B【分析】根据事情发生的
12、可能性大小进行判断,必然事件和不可能事件统称确定性事件;必然事件:在一定条件下,一定会发生的事件称为必然事件;不可能事件:在一定条件下,一定不会发生的事件称为不可能事件;随机事件:在一定条件下,可能发生也可能不发生的事件称为随机事件【详解】A. 明天要下雨,是随机事件,不符合题意;B. a是实数,|a|0,是必然事件,符合题意;C. 34,是不可能事件,不符合题意D. 打开电视机,正在播放新闻,是随机事件,不符合题意故选B【点睛】本题考查了必然事件,随机事件,不可能事件,实数的性质,有理数大小比较,掌握相关知识是解题的关键7、D【分析】将绕点逆时针旋转得,根据旋转的性质得,则为等边三角形,得到
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 最新 沪科版 九年级 数学 下册 期末 综合 复习 答案 详解
限制150内