《真题汇总:2022年重庆市永川区中考数学三年高频真题汇总卷(含详解).docx》由会员分享,可在线阅读,更多相关《真题汇总:2022年重庆市永川区中考数学三年高频真题汇总卷(含详解).docx(25页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 线 封 密 内 号学级年名姓 线 封 密 外 2022年重庆市永川区中考数学三年高频真题汇总卷 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,各图形由大小相同的黑点组成,图1中有2个点,图2中有7
2、个点,图3中有14个点,按此规律,第6个图中黑点的个数是()A47B62C79D982、若关于x的一元二次方程ax24x20有两个实数根,则a的取值范围是( )Aa2Ba2且a0Ca2Da2且a03、点P到x轴的距离是3,到y轴的距离是2,且点P在y轴的左侧,则点P的坐标是()A(2,3)或(2,3)B(2,3)C(3,2)或(3,2)D(3,2)4、已知关于x,y的方程组和的解相同,则的值为( )A1B1C0D20215、如图,点P是ABCD边AD上的一点,E,F分别是BP,CP的中点,已知ABCD面积为16,那么PEF的面积为( )A8B6C4D26、已知,且,则的值为( )A1或3B1或
3、3C1或3D1或37、质检部门从同一批次1000件产品中随机抽取100件进行检测,检测出次品3件,由此估计这一批次产品中次品件数是( )A60B30C600D3008、若(3y4)20,则yx的值为( )ABCD9、下列说法中错误的是( )A若,则B若,则C若,则D若,则10、下列各点在反比例的图象上的是( )A(2,3)B(2,3)C(3,2)D(3,2) 线 封 密 内 号学级年名姓 线 封 密 外 第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、用长的铁丝,折成一个面积是的矩形,则这个矩形的长和宽分别为_2、规定运算*,使x*y,如果1*21,那么3*4_3、如图
4、,在ABC中,AB=AC,A=20,线段AB的垂直平分线交AB于D,交AC于E,连接BE,则CBE为_4、如图,中,将绕原点O顺时针旋转90,则旋转后点A的对应点的坐标是_5、在同一平面上,外有一点P到圆上的最大距离是8cm,最小距离为2cm,则的半径为_cm三、解答题(5小题,每小题10分,共计50分)1、如图1,对于的顶点P及其对边MN上的一点Q,给出如下定义:以P为圆心,PQ长为半径的圆与直线MN的公共点都在线段MN上,则称点Q为关于点P的内联点在平面直角坐标系xOy中:(1)如图2,已知点,点B在直线上若点,点,则在点O,C,A中,点_是关于点B的内联点;若关于点B的内联点存在,求点B
5、横坐标m的取值范围;(2)已知点,点,将点D绕原点O旋转得到点F,若关于点E的内联点存在,直接写出点F横坐标n的取值范围2、解下列不等式(组),并把解集在数轴上表示出来;(1);(2);(3);(4)3、解分式方程:(1) 线 封 密 内 号学级年名姓 线 封 密 外 (2)4、(1)先化简再求值:,其中(2)解方程:5、疫情期间,小明到口罩厂参加社会实践活动,了解到以下关于口罩生产的信息:无纺布的市场价为13000元/吨,熔喷布的市场价为14700元/吨,2吨无纺布与1吨熔喷布能生产110万片口罩另外生产口罩的辅料信息(说明:每片口罩需要一只鼻梁条、两条耳带)如表所示:鼻梁条耳带成本90元/
6、箱230元/箱制作配件数目25000只/箱100000只/箱(1)生产110万片口罩需要鼻梁条 箱,耳带 箱;(2)小明了解到生产和销售口罩的过程中还需支出电费、员工工资、机器损耗及应缴纳的税款等费用经过统计小明发现每片口罩还需支出上述费用大约0.1548元,求每片口罩的成本是多少元?(3)为控制疫情蔓延,口罩厂接到上级下达的用不超过7天紧急生产销售44万片口罩的任务经市场预测,100片装大包销售,每包价格为45.8元;10片装小包销售,每包价格为5.8元该厂每天可包装800大包或2000小包(同一天两种包装方式不能同时进行),且每天需要另外支付2000元费用(不足一天按照一天计费)为在规定时
7、间内完成任务且获得最大利润,该厂设计了三种备选方案,方案一:全部大包销售;方案二:全部小包销售;方案三:同时采用两种包装方式且恰好用7天完成任务请你通过计算,为口罩厂做出决策-参考答案-一、单选题1、A【分析】根据题意得:第1个图中黑点的个数是 ,第2个图中黑点的个数是 ,第3个图中黑点的个数是,第4个图中黑点的个数是 ,由此发现,第 个图中黑点的个数是 ,即可求解【详解】解:根据题意得:第1个图中黑点的个数是 ,第2个图中黑点的个数是 ,第3个图中黑点的个数是,第4个图中黑点的个数是 ,由此发现,第 个图中黑点的个数是 ,第6个图中黑点的个数是 故选:A【点睛】本题主要考查了图形类规律题,明
8、确题意,准确得到规律是解题的关键2、B【分析】根据方程有两个实数根,可得根的判别式的值不小于0,由此可得关于a的不等式,解不等式再结合一元二次方程的定义即可得答案【详解】 线 封 密 内 号学级年名姓 线 封 密 外 解:根据题意得a0且(4)24a20,解得a2且a0故选:B【点睛】本题考查了根的判别式:一元二次方程ax2bxc0(a0)的根与b24ac有如下关系:当0时,方程有两个不相等的实数根;当0时,方程有两个相等的实数根;当0时,方程无实数根3、A【分析】根据点P到坐标轴的距离以及点P在平面直角坐标系中的位置求解即可【详解】解:点P在y轴左侧,点P在第二象限或第三象限,点P到x轴的距
9、离是3,到y轴距离是2,点P的坐标是(2,3)或(2,3),故选:A【点睛】此题考查了平面直角坐标系中点的坐标表示,点到坐标轴的距离,解题的关键是熟练掌握平面直角坐标系中点的坐标表示,点到坐标轴的距离4、B【分析】联立不含a与b的方程组成方程组,求出方程组的解得到x与y的值,进而求出a与b的值,即可求出所求【详解】解:联立得:,解得:,则有,解得:,故选:B【点睛】此题考查了二元一次方程组的解,以及解二元一次方程组,方程组的解即为能使方程组中两方程都成立的未知数的值5、D【分析】根据平行线间的距离处处相等,得到,根据EF是PBC的中位线,得到PEFPBC,EF=,得到计算即可【详解】点P是AB
10、CD边AD上的一点,且 ABCD面积为16,;E,F分别是BP,CP的中点, 线 封 密 内 号学级年名姓 线 封 密 外 EFBC,EF=,PEFPBC,故选D【点睛】本题考查了平行四边形的性质,三角形中位线定理,三角形相似的判定和性质,熟练掌握中位线定理,灵活运用三角形相似的性质是解题的关键6、A【分析】由题意利用乘方和绝对值求出x与y的值,即可求出x-y的值【详解】解:, ,x=1,y=-2,此时x-y=3;x=-1,y=-2,此时x-y=1故选:A【点睛】此题考查了有理数的乘方,绝对值,以及有理数的减法,熟练掌握运算法则是解本题的关键7、B【分析】根据样本的百分比为,用1000乘以3%
11、即可求得答案【详解】解:随机抽取100件进行检测,检测出次品3件,估计1000件产品中次品件数是故选B【点睛】本题考查了根据样本求总体,掌握利用样本估计总体是解题的关键8、A【分析】根据绝对值的非负性及偶次方的非负性得到x-2=0,3y+4=0,求出x、y的值代入计算即可【详解】解:(3y4)20,x-2=0,3y+4=0,x=2,y=,故选:A【点睛】此题考查了已知字母的值求代数式的值,正确掌握绝对值的非负性及偶次方的非负性是解题的关键9、C【分析】 线 封 密 内 号学级年名姓 线 封 密 外 根据不等式的性质进行分析判断【详解】解:A、若,则,故选项正确,不合题意;B、若,则,故选项正确
12、,不合题意;C、若,若c=0,则,故选项错误,符合题意;D、若,则,故选项正确,不合题意;故选C【点睛】本题考查了不等式的性质解题的关键是掌握不等式的性质:不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变10、C【分析】根据反比例函数图象上点的坐标特征对各选项进行判断【详解】解:2(3)6,236,3(2)6, 而326,点(2,3),(2,3)(3,2),不在反比例函数图象上,点(3,2)在反比例函数图象上故选:C【点睛】本题考查了反比例函数图
13、象上点的坐标特征:反比例函数(k为常数,k0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xyk二、填空题1、6cm,5cm【分析】设长是x厘米,则宽是(11-x)cm,根据矩形的面积公式即可列出方程求解【详解】解:设长是x厘米,则宽是(11-x)cm,根据题意得:x(11-x)=30,整理得解得:x1=5,x2=6,则当x=5时,11-x=6(cm);当x=6时,11-x=5(cm),则长是6cm,宽是5cm,故答案为6cm,5cm【点睛】本题考查了一元二次方程的应用,熟练掌握长方形的面积公式、正确理解相等关系是解题的关键2、#【分析】根据新定义求解A的值,得新定义式为x*
14、y,然后再将代入代数式求解即可【详解】解:1*21 线 封 密 内 号学级年名姓 线 封 密 外 解得:A4x*y3*4故答案为:【点睛】本题考查了新定义解题的关键在于正确的理解新定义式的含义3、60【分析】先根据ABC中,AB=AC,A=20求出ABC的度数,再根据线段垂直平分线的性质可求出AE=BE,即A=ABE=20即可解答【详解】解:等腰ABC中,AB=AC,A=20,ABC=80,DE是线段AB垂直平分线的交点,AE=BE,A=ABE=20,CBE=ABC-ABE=80-20=60故答案为:60【点睛】本题主要考查了线段的垂直平分线及等腰三角形的性质等几何知识线段的垂直平分线上的点到
15、线段的两个端点的距离相等4、【分析】如图(见解析),过点作轴于点,点作轴于点,设,从而可得,先利用勾股定理可得,从而可得,再根据旋转的性质可得,然后根据三角形全等的判定定理证出,最后根据全等三角形的性质可得,由此即可得出答案【详解】解:如图,过点作轴于点,点作轴于点,设,则,在中,在中, 线 封 密 内 号学级年名姓 线 封 密 外 ,解得,由旋转的性质得:,在和中,故答案为:【点睛】本题考查了勾股定理、旋转、点坐标等知识点,画出图形,通过作辅助线,正确找出两个全等三角形是解题关键5、5或3【分析】分点P在圆内或圆外进行讨论【详解】解:当点P在圆内时,O的直径长为8+2=10(cm),半径为5
16、cm;当点P在圆外时,O的直径长为8-2=6(cm),半径为3cm;综上所述:O的半径长为 5cm或3cm故答案为:5或3【点睛】本题考查了点与圆的位置关系:点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系三、解答题1、(1)C,A(2)和【分析】(1)由内联点的定义可知C,A满足条件结合图象可知当点B为圆心的圆与AO线段相切时,有一个公共点,且符合内联点定义,故时均符合题意(2)由(1)问可知,当OE与OF,或OF与EF垂直时有一个公共点且满足内联点的定义,故由此可作图,作图见解析,即可由勾股定理、斜率的性质,解得和(1)如图所示,由图
17、像可知C,A点是关于点B的内联点 线 封 密 内 号学级年名姓 线 封 密 外 如图所示,当点B为圆心的圆与AO线段相切时,有一个公共点,符合内联点定义故(2)如图所示,以O为圆心的圆O为点F点的运动轨迹,由(1)问可知当EFO或FOE为90时,关于点E的内联点存在且只有一个,故当F点运动到和的范围内时,关于点E的内联点存在设F点坐标为(x,y),则,由图象即题意知当F点在点时,即有,当F点在点时,即有即当F点在点时,即有即解得或故,当F点在点时, 即化简得且 线 封 密 内 号学级年名姓 线 封 密 外 即即化简得联立解得或x=0故综上所述,F点的横坐标n取值范围为和【点睛】本题考查了有关圆
18、和三角形的新定义概念的综合题目,结合题意作出图象,运用数形结合的思想,熟练应用勾股定理以及斜率是解题的关键2、(1),数轴见解析(2),数轴见解析(3)-1x2,数轴见解析(4)x-10,数轴见解析【分析】(1)去括号,移项,合并同类项,然后把x的系数化为1,最后在数轴上表示即可;(2)去分母,去括号,移项,合并同类项,然后把x的系数化为1,最后在数轴上表示即可;(3)分别计算出两个不等式的解集,再确定出不等式组的解集,最后在数轴上表示;(4)分别计算出两个不等式的解集,再确定出不等式组的解集,最后在数轴上表示;【小题1】解:,去括号得:,移项合并得:,解得:,在数轴上表示为:【小题2】,去分
19、母得:,去括号得:,移项合并得:, 线 封 密 内 号学级年名姓 线 封 密 外 在数轴上表示为:【小题3】,由得:x-1,由得:x2,不等式组的解集为:-1x2,在数轴上表示为:【小题4】,由得:x-4,由得:x-10,不等式组的解集为:x-10,在数轴上表示为:【点睛】此题主要考查了不等式、不等式组的解法,以及不等式组解集在数轴上的表示方法,利用数形结合得出不等式组的解集是解题关键3、(1)(2)【分析】先将分式方程化为整式方程,解出整式方程,再检验,即可求解(1)解:去分母:解得:,检验:当时,故原方程的解为;(2)解:去分母:解得:,检验:当时, , 故原方程的解为【点睛】本题主要考查
20、了解分式方程,熟练掌握解分式方程的基本步骤是解题的关键4、(1),;(2)无解【分析】(1)根据分式的各运算法则进行化简,再代入计算即可;(2)根据分式方程的解法进行求解即可【详解】 线 封 密 内 号学级年名姓 线 封 密 外 解:(1),当时,原式;(2),方程两边都乘,得,解得:,检验:当时,所以是原方程的增根,即原方程无解【点睛】本题考查了分式的化简求值,解分式方程,熟练掌握各运算法则是解题的关键5、(1)44,22(2)0.2元(3)选择方案三,即同时采用两种包装方式且恰好用7天完成任务销售更有利【分析】(1)利用口罩片数125000;利用口罩片数2100000;(2)无纺布的市场价
21、13000元/吨2+熔喷布的市场价14700元/吨1+44箱90+22箱230求出总费用利用总费用110万+0.1548即可;(3)方案一:先确定天数天7然后口罩包数45.8-6天费用-成本=利润;方案二:先确定天数天7天(舍去);方案三:刚好7天,确定每类加工天数,列一元一次方程设包装小包的天数为x,根据等量关系小包口罩片数每天完成包数天数x+大包口罩片数每天完成包数(7-小包天数x)=44万,列方程,解方程求出 再计算利润=小包数单价+大包数单价-其它-成本计算,然后比较利润大小即可(1)解:鼻梁条:110000025000=44箱;耳带:11000002100000=22箱,故答案为44;22;(2)解:(元)(元)(元)答:每片口罩的成本是0.2元(3)方案一:全部大包销售:天(元) 线 封 密 内 号学级年名姓 线 封 密 外 方案二:全部小包销售:天7天(舍去)方案三:设包装小包的天数为x,由题意得:解得:(片),=23200+183200-12000-88000,(元),选择方案三答:选择方案三,即同时采用两种包装方式且恰好用7天完成任务销售更有利【点睛】本题考查有理数的乘除混合运算在生活中运用,一元一次方程的应用,方案设计,掌握有理数的乘除混合运算在生活中运用,一元一次方程的应用,方案设计,仔细阅读题目,分析好各种数据,选择计算方法与应用计算的法则是解题关键
限制150内