人教版九年级数学下册第二十七章-相似专题训练试卷(无超纲).docx
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《人教版九年级数学下册第二十七章-相似专题训练试卷(无超纲).docx》由会员分享,可在线阅读,更多相关《人教版九年级数学下册第二十七章-相似专题训练试卷(无超纲).docx(37页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、人教版九年级数学下册第二十七章-相似专题训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在ABC中,AC=3,BC=6,D为BC边上的一点,且BAC=ADC若ADC的面积为a,则ABC的面积为(
2、)ABCD2、如图,在边长为2的正方形ABCD中,已知BE1,将ABE沿AE折叠,点G与点B对应,连结BG并延长交CD于点F,则GF的长为()ABCD3、在小孔成像问题中,如图所示,若点O到的距离是,点O到的距离是,则像的长与物体长的比是( )ABCD4、如图,ABCDEF,若,BD9,则DF的长为()A2B4C6D85、若且,则的值是( )ABCD6、在ABC中,ABAC,A36,BD平分ABC,交AC于点DBC8,则AC()A44B44C16D127、如图,分别交于点G,H,则下列结论中错误的是( )ABCD8、下列图形一定是相似图形的是()A两个矩形B两个等腰三角形C两个直角三角形D两个
3、正方形9、如图,正方形ABCD和正方形CGFE的顶点C、D、E在同一直线上,顶点B、C、G在同一条直线上O是EG的中点,EGC的平分线GH过点D,交BE于点H,连接FH交EG于点M,连接OH,以下四个结论:GHBE;EHMFHG;1;,其中正确的结论有()A1个B2个C3个D4个10、如图,矩形的对角线、相交于点E,轴于点B,所在直线交x轴于点F,点A、E同时在反比例函数的图象上,已知直线的解析式为,矩形的面积为120,则k的值是( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在平面直角坐标系中,等边ABC与等边BDE是以原点为位似中心的位似图形,且
4、相似比为,点A、B、D在x轴上,若等边BDE的边长为6,则点C的坐标为 _2、如果5a4b,那么_3、已知 , 那么 的值为_4、如图,直线与x轴、y轴分别交于点B、A,点C是x轴上一动点,以C为圆心,为半径的作,当与直线AB相切时,点C的坐标为_5、如图,在ABC中,AB6cm,AC9cm动点P从点A出发以2cm/s的速度向点B运动,动点Q从点C出发以1cm/s的速度向点A运动两点同时出发,其中一点到达终点时,另一点也停止运动当运动时间t_s时,以A、P、Q为顶点的三角形与ABC相似三、解答题(5小题,每小题10分,共计50分)1、如图,在RtABC中,C90,BC4,A60,四边形DEFG
5、是ABC的内接矩形,顶点D、G分别在边AC、BC上,点E、F在边AB上,设AEx,DGy(1)求y与x之间的函数关系式;(2)当矩形DEFG的面积S取得最大值时,求CDG与BFG的相似比2、如图,在中,于点D,E为AC的中点,ED、CB的延长线交于点F求证:(1);(2)3、如图1,四边形ABCD是正方形,连接AC,是等腰直角三角形,DF交AC于点M(1)若DE交BC边于点H,连接BD,求证:(2)连接MH,求证:是等腰直角三角形(3)如图2,若DE交直线AC于点N,DF交BC于点P,交AB的延长线于点G,连接NG,若P是BC的中点,求NG的长4、已知抛物线交x轴于,两点,交y轴于点A,P是抛
6、物线上一动点,设点P的横坐标为m,过点P作x轴的垂线PQ,过点A作于点Q,连接AP(AP不平行x轴)(1)求抛物线的表达式(2)如图1,若,求点P的坐标(3)如图2,若点P位于抛物线的对称轴的右侧,将沿AP对折,点Q的对应点为,当点落在x轴上时,求点P的坐标5、如图1,在ABC中,ABAC2,BAC120,点D、E分别是AC、BC的中点,连接DE(1)探索发现:图1中,的值为 ,的值为 (2)拓展探究若将CDE绕点C旋转,在旋转过程中的大小有无变化?请仅就图2的情形给出证明(3)问题解决当CDE旋转至A,D,C三点共线时,直接写出线段BE的长-参考答案-一、单选题1、A【解析】【分析】证得AB
7、CDAC后由面积比为相似比的平方即可求得ABC的面积【详解】BAC=ADC,C=CABCDAC又AC=3,BC=6AC:BC=1:2ABCDAC相似比为2:1则ABCDAC面积比为4:1DAC的面积为aABC的面积为4a故选:A【点睛】本题考查了相似三角形判断及性质,相似三角形的对应边成比例,对应角相等,相似三角形的对应高的比,对应中线的比,对应角平分线的比都等于相似比,相似三角形的周长比等于相似比,相似三角形的面积比等于相似比的平方2、B【解析】【分析】如图所示:设BF与AE相交于M,先证明EBMBAE,即可利用ASA证明RtABERtBCF得到CFBE1,从而求出,然后证明EBMFBC,得
8、到 ,即 ,求出 ,即可得到BG2BM,即可得到FGBFBG3 【详解】解:如图所示:设BF与AE相交于M,四边形ABCD是正方形,ABBC,ABCBCD90,ABE沿AE折叠得到AGE,AE是线段BG的垂直平分线,EMB90,EBM+BEM90,BAE+BEM90,EBMBAE,在RtABE和RtBCF中,RtABERtBCF(ASA),CFBE1,又EBMFBC,BMEBCF,EBMFBC,即,BG2BM,FGBFBG3,故选B【点睛】本题主要考查了正方形的性质,折叠的性质,全等三角形的性质与判定,相似三角形的性质与判定,勾股定理等等,熟练掌握相似三角形的性质与判定条件是解题的关键3、B【
9、解析】【分析】由题意可知与是相似三角形,相似比为1:3,故CD:AB=1:3【详解】由小孔成像的定义与原理可知与高的比为6:18=1:3与相似比为1:3CD:AB=1:3故选:B【点睛】本题考查了相似三角形的性质,用一个带有小孔的板遮挡在屏幕与物之间,屏幕上就会形成物的倒像,我们把这样的现象叫小孔成像相似三角形的对应边成比例,对应角相等,相似三角形的对应高的比,对应中线的比,对应角平分线的比都等于相似比4、C【解析】【分析】根据平行线分线段成比例定理列出比例式,把已知数据代入计算即可【详解】解:ABCDEF, ,解得:DF6,故选:C【点睛】本题主要是考查了平行线分线段成比例,利用平行条件,找
10、到线段比例式,代入对应边长求解,这是解决本题的主要思路5、D【解析】【分析】将用表示出来,得到,再将求出的结果与联立求出的值 ,最后把所求的代入所求的代数式即可求解【详解】解:,解,得, ,故选:D【点睛】本题考查了比例的性质,解一元一次方程,求代数式的值,由比例系数表示是解题的关键6、A【解析】【分析】根据两角对应相等,判定两个三角形相似再用相似三角形对应边的比相等进行计算求出AC的长【详解】解:AB=AC,A=36,ABC=C=72,BD平分ABC,ABD=DBC=36,BDC=ABD+A=72,BDC=C=72,AD=BD=BC=8A=DBC=36,C公共角,ABCBDC,即,整理得:A
11、C2-8AC-64=0,解方程得:AC=4+4,或AC=4-4(舍去),故选:A【点睛】本题考查的是相似三角形的判定与性质,先用两角对应相等判定两个三角形相似,再用相似三角形的性质对应边的比相等进行计算求出AC的长7、D【解析】【分析】根据平行线分线段成比例和相似三角形的性质与判定,进行逐一判断即可【详解】解:ABCD,A选项正确,不符合题目要求;AEDF,CGE=CHD,CEG=D,CEGCDH,ABCD,B选项正确,不符合题目要求; ABCD,AEDF,四边形AEDF是平行四边形,AF=DE,AEDF,; C选项正确,不符合题目要求;AEDF,BFHBAG,ABFA,D选项不正确,符合题目
12、要求 故选D【点睛】本题考查了平行线分线段成比例定理,相似三角形的性质和判定的应用,能根据定理得出比例式是解此题的关键8、D【解析】【分析】根据相似图形的定义,结合选项,用排除法求解【详解】解:A、两个矩形,对应角相等,对应边不一定成比例,故不符合题意;B、两个等腰三角形顶角不一定相等,故不符合题意C、两个直角三角形,只有一个直角相同,锐角不一定相等,故不符合题意;D、两个正方形,符合角分别对应相等,边分别对应成比例,符合相似性定义,故符合题意;故选:D【点睛】本题考查的是相似图形的概念,掌握“角分别对应相等,边分别对应成比例的两个多边形相似”是解本题的关键.9、C【解析】【分析】由四边形AB
13、CD和四边形CGFE是正方形,得出BCEDCG,推出BEC+HDE=90,从而得GHBE;由GH是EGC的平分线,得出BGHEGH,再由O是EG的中点,利用中位线定理,得HOBG且HO=BG;由EHG是直角三角形,因为O为EG的中点,所以OH=OG=OE,得出点H在正方形CGFE的外接圆上,根据圆周角定理得出FHG=EHF=EGF=45,HEG=HFG,从而证得EHMFHG;设CG=a,则BG=GE=,BC=,即可得出,设正方形ECGF的边长是2b,则EG=,得到HO=,通过证得MHOMFE,得到,进而得到,进一步得到【详解】解:如图,四边形ABCD和四边形CGFE是正方形, BC=CD,CE
14、=CG,BCE=DCG,在BCE和DCG中,BCEDCG(SAS),BEC=BGH,BGH+CDG=90,CDG=HDE,BEC+HDE=90,GHBE故正确;EHG是直角三角形,O为EG的中点,OH=OG=OE,点H在正方形CGFE的外接圆上,EF=FG,FHG=EHF=EGF=45,HEG=HFG,EHMFHG,故正确;BGHEGH, BG=EG,设CG=a,则BG=GE=,BC=,;故正确;BGHEGH,EH=BH,HO是EBG的中位线,HO=BG,HO=EG,设正方形ECGF的边长是2b, EG=,HO=,OHBG,CGEF,OHEF,MHOMFE,EM=OM,EO=GO,SHOE=S
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版 九年级 数学 下册 第二 十七 相似 专题 训练 试卷 无超纲
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内