人教版八年级数学下册第十七章-勾股定理章节训练练习题(含详解).docx
《人教版八年级数学下册第十七章-勾股定理章节训练练习题(含详解).docx》由会员分享,可在线阅读,更多相关《人教版八年级数学下册第十七章-勾股定理章节训练练习题(含详解).docx(30页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、人教版八年级数学下册第十七章-勾股定理章节训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,将长方形纸片ABCD沿AE折叠,使点D恰好落在BC边上点F处,若AB3,AD5,则EC的长为( )A1B
2、CD2、课间,小聪拿着老师的等腰直角三角板玩,不小心掉到两墙之间(如图),ACB90,ACBC,从三角板的刻度可知AB20cm,小聪想知道砌墙砖块的厚度(每块砖的厚度相等),下面为砌墙砖块厚度的平方是( )Acm2Bcm2Ccm2Dcm23、如图,一只蚂蚁沿着边长为4的正方体表面从点A出发,爬到点B,如果它运动的路径是最短的,则AC的长为( )A4+2B4C2D44、有下列条件:;,其中能确定是直角三角形的是( )ABCD5、如图,四边形ABCD中,AB3cm,AD4cm,BC13cm,CD12cm,且A90,则四边形ABCD的面积为( )A12cm2B18cm2C22cm2D36cm26、如
3、图,在RtDFE中,两个阴影正方形的面积分别为SA36,SB100,则直角三角形DFE的另一条直角边EF的长为( )A5B6C8D107、如图,在ABC中,A90,AB6,BC10,EF是BC的垂直平分线,P是直线EF上的任意一点,则PAPB的最小值是( )A6B8C10D128、下列命题属于假命题的是( )A3,4,5是一组勾股数B内错角相等,两直线平行C三角形的内角和为180D9的平方根是39、如图是由4个全等的直角三角形与1个小正方形拼成的正方形图案已知大正方形面积为25,小正方形面积为1,若用a、b表示直角三角形的两直角边(ab),则下列说法:a2+b2=25,ab=1,ab=12,a
4、+b=7正确的是()ABCD10、下列四组数中,是勾股数的是( )A5,12,13B,C1,D7,24,26第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在ABC中,ABAC12,A30,点E是AB中点,点D在AC上,DE3,将ADE沿着DE翻折,点A的对应点是点F,直线EF与AC交于点G,那么DGF的面积_2、如图,等腰ABC中,ABAC,BC,BD是AC边上的中线,G是ABC的重心,则GD_3、如图,在ABC中,ABAC,BAC90,点D、点E在直线BC上,点F为AE上一点,连接BF,分别交AD、AC于点G、点H,若BADCAE,AGHE,AF+ADBF,AC3,
5、则AE的长为 _4、如图,ABC中,ACB90,AC4,BC3,射线CD与边AB交于点D,点E、F分别为AD、BD中点,设点E、F到射线CD的距离分别为m、n,则mn的最大值为_5、在RtABC中,90AB1,AC2,则BC=_三、解答题(5小题,每小题10分,共计50分)1、如图所示的一块地,已知AD=4米,CD=3米,ADC=90,AB=13米,BC=12米,则这块地的面积为多少?2、如图,有一张四边形纸片,经测得,(1)求、两点之间的距离(2)求这张纸片的面积3、图,图均为44的正方形网格,每个小正方形的顶点称为格点,且每个小正方形的边长均为1图中点A,B,C均在格点上,请分别在给定的网
6、格中画出格点M,使点M满足相应的要求(1)在图中画出格点M,连结MA,使MA5(2)在图中画出格点M,连结MA,MB,MC,使MAMBMC4、如图1,在RtABC中,C90,EAAB于点A,EB交AC于点D,且ADAE(1)求证:BD平分ABC;(2)如图2,过E作EFAC于点F求证:AFCD;若BC6,AB10,则线段DE的长为_5、一架梯子长13米,斜靠在一面墙上,梯子底端离墙5米(1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了7米到C,那么梯子的底端在水平方向滑动了几米?-参考答案-一、单选题1、D【分析】由翻折可知:ADAF5DEEF,设ECx,则DEEF3x在RtECF中
7、,利用勾股定理构建方程即可解决问题【详解】解:四边形ABCD是矩形,ADBC5,ABCD3,BBCD90,由翻折可知:ADAF5,DEEF,设ECx,则DEEF3x在RtABF中,BF4,CFBCBF541,在RtEFC中,EF2CE2CF2,(3x)2x212,x,EC故选:D【点睛】本题考查了折叠的性质,矩形的性质,勾股定理,熟练掌握方程的思想方法是解题的关键2、A【分析】设每块砖的厚度为xcm,则AD=3xcm,BE=2xcm,然后证明DACECB得到CD=BE=2xcm,再利用勾股定理求解即可【详解】解:设每块砖的厚度为xcm,则AD=3xcm,BE=2xcm,由题意得:ACB=ADC
8、=BEC=90,ACD+DAC=ACD+BCE=90,DAC=ECB,又AC=CB,DACECB(AAS),CD=BE=2xcm,故选A【点睛】本题主要考查了全等三角形的性质与判定,勾股定理,解题的关键在于能够熟练掌握全等三角形的性质与判定条件3、C【分析】将正方体展开,右边的正方形与前面正方形放在一个面上,此时AB最短,根据三角形中位线,求出CN的长,利用勾股定理求出AC的长即可【详解】解:将正方体展开,右边的正方形与前面正方形放在一个面上,展开图如图所示,此时AB最短,ANMN,CNBMCNBM2,在RtACN中,根据勾股定理得:AC2,故选:C【点睛】本题考查了平面展开-最短路径问题,涉
9、及的知识有:三角形中位线,勾股定理,熟练求出CN的长是解本题的关键4、C【分析】由题意根据所给的数据和三角形内角和定理,勾股定理的逆定理分别对每一项进行分析,即可得出答案【详解】解:由题意知,解得,则是直角三角形;,则不是直角三角形;由题意知,解得,则是直角三角形;由题意知,则是直角三角形;故选:C【点睛】本题主要考查直角三角形的判定方法注意掌握如果三角形中有一个角是直角,那么这个三角形是直角三角形;如果一个三角形的三边a,b,c满足a2+b2=c2,那么这个三角形是直角三角形5、D【分析】首先连接BD,再利用勾股定理计算出BD的长,再根据勾股定理逆定理计算出D=90,然后计算出直角三角形AB
10、D和直角三角形BDC的面积,即可算出答案【详解】解:如图,连接BD,A=90,AB=3cm,AD=4cm,BD=5(cm),BC=13cm,CD=12cm,52+122=132,BD2+CD2=CB2,BDC=90,SDBC=DBCD=512=30(cm2),SABD=34=6(cm2),四边形ABCD的面积为30+6=36(cm2),故选:D【点睛】本题主要考查了勾股定理,以及勾股定理的逆定理,解决此题的关键是算出BD的长,证明BDC是直角三角形6、C【分析】根据正方形面积公式可得,然后利用勾股定理求解即可【详解】解:由题意得:,DEF是直角三角形,且DEF=90,故选C【点睛】本题主要考查
11、了以直角三角形三边为边长的图形面积,解题的关键在于能够熟练掌握勾股定理7、B【分析】如图,由线段垂直平分线的性质可知PB=PC,则有PA+PB=PA+PC,然后可知当点A、P、C三点共线时,PA+PB取得最小值,即为AC的长【详解】解:如图,连接PC,EF是BC的垂直平分线,PB=PC,PA+PB=PA+PC,PAPB的最小值即为PAPC的最小值,当点A、P、C三点共线时,PA+PB取得最小值,即为AC的长,在RtABC中,A90,AB6,BC10,由勾股定理可得:,PAPB的最小值为8;故选B【点睛】本题主要考查垂直平分线的性质及勾股定理,熟练掌握垂直平分线的性质及勾股定理是解题的关键8、D
12、【分析】利用勾股数的定义、平行线的判定、三角形的内角和及平方根的定义分别判断后即可确定正确的选项【详解】解:A、3,4,5是一组勾股数,正确,是真命题,不符合题意;B、内错角相等,两直线平行,正确,是真命题,不符合题意;C、三角形的内角和为180,正确,是真命题,不符合题意;D、9的平方根是3,故原命题是假命题,符合题意故选:D【点睛】考查了命题与定理的知识,解题的关键是了解勾股数的定义、平行线的判定、三角形的内角和及平方根的定义,难度不大9、D【分析】由大的正方形的边长为结合勾股定理可判断,由小的正方形的边长为 结合小正方形的面积可判断,再利用 结合可判断,再由可判断,从而可得答案.【详解】
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版 八年 级数 下册 第十七 勾股定理 章节 训练 练习题 详解
限制150内