知识点详解人教版八年级数学下册第十八章-平行四边形同步练习练习题(无超纲).docx
《知识点详解人教版八年级数学下册第十八章-平行四边形同步练习练习题(无超纲).docx》由会员分享,可在线阅读,更多相关《知识点详解人教版八年级数学下册第十八章-平行四边形同步练习练习题(无超纲).docx(35页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、人教版八年级数学下册第十八章-平行四边形同步练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,已知是平分线上的一点,是的中点,如果是上一个动点,则的最小值为( )ABCD2、如图,点E是长方形AB
2、CD的边CD上一点,将ADE沿着AE对折,点D恰好折叠到边BC上的F点,若AD10,AB8,那么AE长为()A5B12C5D133、如图,矩形OABC的边OA长为2,边AB长为1,OA在数轴上,以原点O为圆心,对角线OB的长为半径画弧,交正半轴于一点,则这个点表示的实数是( )A2.5B2CD4、如图是用若干个全等的等腰梯形拼成的图形,下列说法错误的是( )A梯形的下底是上底的两倍B梯形最大角是C梯形的腰与上底相等D梯形的底角是5、如图,在矩形ABCD中,点O为对角线BD的中点,过点O作线段EF交AD于F,交BC于E,OBEB,点G为BD上一点,满足EGFG,若DBC30,则OGE的度数为()
3、A30B36C37.5D456、如图,在中,点,分别是,上的点,点,分别是,的中点,则的长为( )A4B10C6D87、如图,把正方形纸片ABCD沿对边中点所在的直线对折后展开,折痕为MN,再过点B折叠纸片,使点A落在MN上的点F处,折痕为BE,若AB的长为2,则FM的长为()A2BCD18、如图,点E是ABC内一点,AEB90,D是边AB的中点,延长线段DE交边BC于点F,点F是边BC的中点若AB6,EF1,则线段AC的长为()A7BC8D99、如图,菱形ABCD的对角线AC、BD的长分别为6和8,O为AC、BD的交点,H为AB上的中点,则OH的长度为( )A3B4C2.5D510、如图,在
4、ABCD中,AD=2AB,F是AD的中点,作CEAB于E,在线段AB上,连接EF、CF则下列结论:BCD=2DCF;ECF=CEF;SBEC=2SCEF;DFE=3AEF,其中一定正确的是( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,将n个边长都为1的正方形按如图所示摆放,点A1,A2,An分别是正方形的中心,则n个正方形重叠形成的重叠部分的面积和为_2、如图,在中,为上的两个动点,且,则的最小值是_3、如图,为了测量池塘两岸A,B两点之间的距离,可在AB外选一点C,连接AC和BC,再分别取AC、BC的中点D,E,连接DE并测量出DE的长,即可确定
5、A、B之间的距离若量得DE=15m,则A、B之间的距离为_m4、已知正方形ABCD的一条对角线长为2,则它的面积是_5、如图,矩形ABCD中,AB=4,BC=6,点E为BC的中点,将ABE沿AE翻折至AFE,连接CF,则CF的长为_三、解答题(5小题,每小题10分,共计50分)1、如图1,在平面直角坐标系中,且;(1)试说明是等腰三角形;(2)已知写出各点的坐标:A( , ),B( , ),C( , )(3)在(2)的条件下,若一动点M从点B出发沿线段BA向点A运动,同时动点N从点A出发以相同速度沿线段AC向点C运动,当其中一点到达终点时整个运动都停止若的一条边与BC平行,求此时点M的坐标;若
6、点E是边AC的中点,在点M运动的过程中,能否成为等腰三角形?若能,求出此时点的坐标;若不能,请说明理由2、如图,ABC中,ACB90,AB5cm,BC4cm,过点A作射线lBC,若点P从点A出发,以每秒2cm的速度沿射线l运动,设运动时间为t秒(t0),作PCB的平分线交射线l于点D,记点D关于射线CP的对称点是点E,连接AE、PE、BP(1)求证:PCPD;(2)当PBC是等腰三角形时,求t的值;(3)是否存在点P,使得PAE是直角三角形,如果存在,请直接写出t的值,如果不存在,请说明理由3、如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角
7、形(1)在图1中,画一个三边长都是有理数的直角三角形;(2)在图2中,画一个以BC为斜边的直角三角形,使它们的三边长都是无理数且都不相等;(3)在图3中,画一个正方形,使它的面积是104、(1)先化简,再求值:(a+b)(ab)a(a2b),其中a1,b2;(2)如图,菱形ABCD中,ABAC,E、F分别是BC、AD的中点,连接AE、CF证明:四边形AECF是矩形5、如图,在菱形ABCD中,点E,F分别是边AB和BC上的点,且BEBF求证:DEFDFE-参考答案-一、单选题1、C【解析】【分析】根据题意由角平分线先得到是含有角的直角三角形,结合直角三角形斜边上中线的性质进而得到OP,DP的值,
8、再根据角平分线的性质以及垂线段最短等相关内容即可得到PC的最小值【详解】解:点P是AOB平分线上的一点,PDOA,M是OP的中点,点C是OB上一个动点当时,PC的值最小,OP平分AOB,PDOA,最小值,故选C【点睛】本题主要考查了角平分线的性质、含有角的直角三角形的选择,直角三角形斜边上中线的性质、垂线段最短等相关内容,熟练掌握相关性质定理是解决本题的关键2、C【解析】【分析】根据矩形的性质,折叠的性质,勾股定理即可得到结论【详解】解:四边形ABCD是矩形,将ADE沿着AE对折,点D恰好折叠到边BC上的F点,故选:C【点睛】本题考查了翻折变换,矩形的性质,勾股定理等知识,解题的关键是学会利用
9、参数构建方程解决问题3、D【解析】【分析】利用矩形的性质,求证明,进而在中利用勾股定理求出的长度,弧长就是的长度,利用数轴上的点表示,求出弧与数轴交点表示的实数即可【详解】解:四边形OABC是矩形,在中,由勾股定理可知:, ,弧长为,故在数轴上表示的数为,故选:【点睛】本题主要是考查了矩形的性质、勾股定理解三角形以及数轴上的点的表示,熟练利用矩形性质,得到直角三角形,然后通过勾股定理求边长,是解决该类问题的关键4、D【解析】【分析】如图(见解析),先根据平角的定义可得,再根据可求出,由此可判断选项;先根据等边三角形的判定与性质可得,再根据平行四边形的判定可得四边形是平行四边形,根据平行四边形的
10、性质可得,然后根据菱形的判定可得四边形是菱形,根据菱形的性质可得,最后根据线段的和差、等量代换可得,由此可判断选项【详解】解:如图,梯形是等腰梯形, ,则梯形最大角是,选项B正确;没有指明哪个角是底角,梯形的底角是或,选项D错误;如图,连接,是等边三角形,点共线,四边形是平行四边形,四边形是菱形,选项A、C正确;故选:D【点睛】本题考查了等腰梯形、菱形的判定与性质、等边三角形的判定与性质等知识点,熟练掌握各判定与性质是解题关键5、C【解析】【分析】根据矩形和平行线的性质,得;根据等腰三角形和三角形内角和性质,得;根据全等三角形性质,通过证明,得;根据直角三角形斜边中线、等腰三角形、三角形内角和
11、性质,推导得,再根据余角的性质计算,即可得到答案【详解】矩形ABCD OBEB, 点O为对角线BD的中点, 和中 EGFG,即 故选:C【点睛】本题考查了矩形、平行线、全等三角形、等腰三角形、三角形内角和、直角三角形的知识;解题的关键是熟练掌握矩形、全等三角形、等腰三角形、直角三角形斜边中线的性质,从而完成求解6、B【解析】【分析】根据三角形中位线定理得到PD=BF=6,PDBC,根据平行线的性质得到PDA=CBA,同理得到PDQ=90,根据勾股定理计算,得到答案【详解】解:C=90,CAB+CBA=90,点P,D分别是AF,AB的中点,PD=BF=6,PD/BC,PDA=CBA,同理,QD=
12、AE=8,QDB=CAB,PDA+QDB=90,即PDQ=90,PQ=10,故选:B【点睛】本题考查的是三角形中位线定理、勾股定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键7、B【解析】【分析】由折叠的性质可得,BMN=90,FB=AB=2,由此利用勾股定理求解即可【详解】解:把正方形纸片ABCD沿对边中点所在的直线对折后展开,折痕为MN,AB=2,BMN=90,四边形ABCD为正方形,AB=2,过点B折叠纸片,使点A落在MN上的点F处,FB=AB=2,则在RtBMF中,故选B【点睛】本题主要考查了正方形与折叠,勾股定理,解题的关键在于能够熟练掌握折叠的性质8、C【解析】
13、【分析】根据直角三角形的性质求出DE,由EF=1,得到DF,再根据三角形中位线定理即可求出线段AC的长【详解】解:AEB90,D是边AB的中点,AB6,DEAB3,EF1,DFDE+EF3+14D是边AB的中点,点F是边BC的中点,DF是ABC的中位线,AC2DF8故选:C【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,三角形中位线定理,求出DF的长是解题的关键9、C【解析】【分析】根据菱形的性质求得边长,进而根据三角形中位线定理求得的长度【详解】四边形ABCD是菱形,AOOC,OBOD,AOBO,又点H是AD中点,OH是DAB的中位线,在RtAOB中,AB5,则OHAB=2.5
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 知识点 详解 人教版 八年 级数 下册 第十八 平行四边形 同步 练习 练习题 无超纲
限制150内