《难点解析京改版八年级数学下册第十六章一元二次方程专题练习试题(含详解).docx》由会员分享,可在线阅读,更多相关《难点解析京改版八年级数学下册第十六章一元二次方程专题练习试题(含详解).docx(18页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、京改版八年级数学下册第十六章一元二次方程专题练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、方程x24x的解是()Ax4Bx2Cx4或x0Dx02、将一元二次方程通过配方转化为的形式,下列结果中正确的
2、是( )ABCD3、用配方法解一元二次方程x210x+210,下列变形正确的是()A(x5)24B(x+5)24C(x5)2121D(x+5)21214、生活垃圾无害化处理可以降低垃圾及其衍生物对环境的影响据统计,2017年全国生活垃圾无害化处理能力约为2.5亿吨,随着设施的增加和技术的发展,2019年提升到约3.2亿吨如果设这两年全国生活垃圾无害化处理能力的年平均增长率为,那么根据题意可以列方程为( )ABCD5、已知方程的两根分别为m、n,则的值为( )A1BC2021D6、关于x的一元二次方程x2mx(m2)0的根的情况是()A有两个不相等的实数根B有两个相等的实数根C没有实数根D根据m
3、的取值范围确定7、在等式;中,符合一元二次方程概念的是( )ABCD8、下列方程中是一元二次方程的是( )Ay21B0CD9、下列方程中,是一元二次方程的个数有()(1)x22x10;(2)20;(3)x22x10;(4)(a1)x2bxc0;(5)x2x4x2A2个B3个C4个D5个10、若一元二次方程x25x+k =0的一根为2,则另一个根为( )A3B4C5D6第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若方程是关于的一元二次方程,则_2、若关于x的一元二次方程的一个根是m,则的值为_3、已知关于x的一元二次方程(k+1)x2+2x10有实数根,则k的取值范围
4、是 _4、甲公司前年缴税100万元,今年缴税121万元,则该公司缴税的年平均增长率 _5、代数式的最小值是_三、解答题(5小题,每小题10分,共计50分)1、解方程: (1)4(x1)29; (2)x2+8x+150;(3)25x2+10x+10; (4)x23x+102、数学兴趣小组的李舒和林涵两位同学用棋子摆图形探究规律若两人都按照各自的规律继续摆下去,请回答下列问题:如图1李舒摆成的图形:如图2林涵摆成的图形:(1)填写下表:图形序号1234n李舒所用棋子数111621林涵所用棋子数149(2)是否存在某个图形恰好含有76个棋子?若存在,请求出该图形序号,若不存在,请说明理由;(3)哪位
5、同学所摆的某个图形含有棋子个数先超过120个?请说明理由(4)两位同学所摆图形中,是否存在所需棋子数相同的图形,若存在,请直接写出该图形序号,若不存在,请说明理由3、解方程:(1)(配方法)(2)(公式法)4、用适当的方法解方程(1); (2)5、某商城购进了一批某种品牌冰箱,标价为每台3000元(1)为回馈新老用户,在国庆节期间,商城对冰箱进行了连续两次降价销售,每次降价的百分率相同,最后以2430元售出,求每次降价的百分率;(2)市场调研表明:当每台冰箱的售价为3000元时,每天能售出8台;当每台冰箱的售价每降50元时,每天就能多售出4台;若商城计划在某天销售20台冰箱,则每台冰箱的售价应
6、定为多少元?-参考答案-一、单选题1、C【分析】本题可先进行移项得到:x24x0,然后提取出公因式x,两式相乘为0,则这两个单项式必有一项为0【详解】解:原方程可化为:x24x0,提取公因式:x(x4)0,x0或x故选:C【点睛】本题主要考查了一元二次方程的计算,准确分析计算是解题的关键2、A【分析】将常数项移到方程的右边,两边都加上一次项系数一半的平方配成完全平方式后即可【详解】解:,即,故选A【点睛】本题考查了解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键3、A【分析】利用配方法,方程的两
7、边同时加上一次项系数一半的平方,即可求解【详解】解:x210x+210,移项得: ,方程两边同时加上25,得: ,即 故选:A【点睛】本题主要考查了利用配方法解一元二次方程,熟练掌握利用配方法,需要方程的两边同时加上一次项系数一半的平方是解题的关键4、C【分析】设这两年全国生活垃圾无害化处理能力的年平均增长率为,根据等量关系,列出方程即可【详解】解:设这两年全国生活垃圾无害化处理能力的年平均增长率为,由题意得:,故选C【点睛】本题主要考查一元二次方程的实际应用,掌握增长率模型,是解题的关键5、B【分析】由题意得mn1,m22021m+10,将代数式变形后再代入求解即可【详解】方程x22021x
8、+10的两根分别为m,n,mn1,m22021m+10,m22021m1,m21,故选:B【点睛】本题考查了根的定义及根与系数的关系:若x1,x2是一元二次方程ax2+bx+c0(a0)的两根时,x1+x2,x1x2,熟练掌握代数式的求值技巧是解题的关键6、A【分析】根据根的判别式判断即可【详解】,方程有两个不相等的实数根故选:A【点睛】本题考查一元二次方程根的判别式,当时,方程有两个不相等的实数根;当时,方程有两个相等的实数根;当时,方程没有实数根,熟记判别式并灵活应用是解题关键7、B【分析】根据一元二次方程定义,只含有一个未知数,并且未知数项的最高次数是2的整式方程叫做一元二次方程,逐个分
9、析判断即可【详解】解:,是一元二次方程,符合题意;,不是方程,不符合题意;,不是整式方程,不符合题意;,是二元一次方程,不符合题意;,是一元一次方程,不符合题意故符合一元二次方程概念的是故选B【点睛】本题考查了一元二次方程定义,掌握一元二次方程定义是解题的关键8、B【分析】只含有一个未知数,且未知数的最高次数是2的整式方程叫做一元二次方程一元二次方程有三个特点:(1)只含有一个未知数;(2)未知数的最高次数是2;(3)是整式方程,据此解答即可【详解】解:A是二元二次方程,故本选项不合题意; B是一元二次方程,故本选项符合题意;C是二元二次方程,故本选项不合题意;D当a=0时,不含二次项,故本选
10、项不合题意;故选:B【点睛】此题主要考查了一元二次方程的定义,要判断一个方程是否为一元二次方程,先看它是否为整式方程,若是,再对它进行整理如果能整理为ax2+bx+c0(a0)的形式,则这个方程就为一元二次方程9、B【分析】根据一元二次方程的定义(只含有一个未知数,且未知数的最高次数为二次的整式方程,且二次项系数不为0)依次进行判断即可【详解】解:(1)是一元二次方程; (2)不是一元二次方程;(3)是一元二次方程;(4),的值不确定,不是一元二次方程;(5)是一元二次方程,共3个,故选:B【点睛】题目主要考查一元二次方的定义,深刻理解这个定义是解题关键10、A【分析】设方程的另一根为t,根据
11、根与系数的关系得到2t5,求出t即可【详解】解:设方程的另一根为t,根据题意得2t5,解得t3故选A【点睛】本题考查了一元二次方程根与系数的关系:若x1,x2是一元二次方程ax2bxc0(a0)的两根时,则x1x2,x1x2二、填空题1、【分析】形如,含有一个未知数,未知数的最高次数是2的方程是一元二次方程,根据定义列不等式或方程,从而可得答案【详解】方程是关于x的一元二次方程,由得:,由得:,故答案为:【点睛】本题考查的是一元二次方程的定义,根据一元二次方程的定义列方程或不等式是解题的关键2、-2011【分析】由关于x的一元二次方程的一个根是m,可得,再由求解即可【详解】解:关于x的一元二次
12、方程的一个根是m,故答案为:-2011【点睛】本题考查一元二次方程的解和代数式求值,解题的关键是正确理解一元二次方程的解的定义,本题属于基础题型3、且【分析】利用一元二次方程的定义和根的判别式的意义得到k+10且224(k+1)(1)0,然后求出两个不等式的公共部分即可【详解】解:根据题意得k+10且224(k+1)(1)0,解得k2且k1故答案为:k2且k1【点睛】本题考查一元二次方程根的判别式、解一元一次不等式等知识,是重要考点,难度较小,掌握相关知识是解题关键4、10%【分析】设公司缴税的年平均增长率为x,根据增长后的纳税额增长前的纳税额(1+增长率),即可得到去年的纳税额是100(1+
13、x)万元,今年的纳税额是100(1+x)2万元,据此即可列出方程求解【详解】解:设该公司缴税的年平均增长率为x,依题意得100(1+x)2121解方程得x10.110%,x22.1(舍去)所以该公司缴税的年平均增长率为10%故答案为:10%【点睛】本题考查了一元二次方程的实际应用-增长率问题,认真审题找到等量关系是是解题的关键5、【分析】利用配方法得到:利用非负数的性质作答【详解】解:因为0,所以当x=1时,代数式的最小值是,故答案是:【点睛】本题主要考查了配方法的应用,非负数的性质配方法的理论依据是公式a22ab+b2=(ab)2三、解答题1、(1),;(2),;(3);(4),【分析】(1
14、)先变形,然后运用直接开方法求解即可;(2)直接应用因式分解法求解即可;(3)将其变形为完全平方式,然后运用直接开方法即可得;(4)直接运用公式法求解即可得【详解】解:(1)方程变形得:,开方得:,解得:,;(2)分解因式得:,可得或,解得:,;(3)方程变形得:,解得:;(4)这里,【点睛】题目主要考查解一元二次方程的方法:直接开方法、因式分解法、公式法,熟练掌握运用解方程的方法是解题关键2、(1)图形序号1234n李舒所用棋子数11162126林涵所用棋子数14916;(2)李舒所摆图形的第14图形恰好含有76个棋子;林涵所摆的图形中没有恰好含有76个棋子的;(3)林涵同学所摆的第11个图
15、形含有棋子个数先超过120个;(4)两位同学所摆图形中,第6个图形所需棋子数相同【解析】【分析】(1)根据所给图形和表格找到每个同学所摆图形所需棋子个数的规律,并用代数式表示,即可填写表格;(2)令(1)所总结的两个代数式分别等于76,解出结果是整数的即为恰好含有76个棋子的图形;(3)令(1)所总结的两个代数式分别等于120,解出结果更小的,就说明那个同学所摆的图形含有棋子个数先超过120个;(4)令(1)所总结的两个代数式相等,即列出关于n的一元二次方程,解出n即可【详解】(1)根据李舒所用棋子数:第1图形:,第2图形:,第3图形:,第4图形的棋子数为:,第n图形的棋子数为:;林涵所用棋子
16、数:第1图形:,第2图形:,第3图形:,第4图形的棋子数为:,第n图形的棋子数为:故可填表为:图形序号1234n李舒所用棋子数11162126林涵所用棋子数14916(2),解得:,李舒所摆图形的第14图形恰好含有76个棋子;,解得:,林涵所摆的图形中没有恰好含有76个棋子的;(3),解得:,李舒所摆图形的第23图形开始超过120个;,解得:,林涵所摆图形的第11图形开始超过120个;故林涵同学所摆的第11个图形含有棋子个数先超过120个;(4),解得:,(舍)故:两位同学所摆图形中,第6个图形所需棋子数相同【点睛】本题考查图形类规律探索,一元二次方程的实际应用根据所给图形和表格找到每个同学所
17、摆图形所需棋子个数的规律,并用代数式表示是解答本题的关键3、(1);(2)【分析】(1)利用配方法,首先将常数项移项,再配方,方程两边同时加上一次项系数一半的平方求出即可;(2)利用公式法直接代入求出即可【详解】(1)(2)【点睛】本题考查了解一元二次方程,熟练掌握公式法、配方法的解题步骤是解题的关键4、(1),(2)【分析】用因式分解法解方程即可【详解】解:(1), , , ,;(2),【点睛】本题考查了一元二次方程解法,解题关键是熟练运用因式分解法解方程5、(1)每次降价的百分率是10%;(2)定价为2850元【分析】(1)设每次降价的百分率为x,根据降价后的价格降价前的价格(1降价的百分率),则第一次降价后的价格是60(1x)元,第二次后的价格是60(1x)2元,据此即可列方程求解;(2)假设下调a个50元,销售冰箱数量原销售量+多售出量,即可列方程求解【详解】解:(1)设每次降价的百分率为x,依题意得:3000(1x)22430,解得x10.110%,x21.9(不合题意,舍去)答:每次降价的百分率是10%;(2)假设下调a个50元,依题意得:208+4a解得a3所以下调150元,因此定价为3000-150=2850元【点睛】本题主要考查一元二次方程的应用,解题的关键是理解题意,找到题目蕴含的相等关系,并据此列出方程
限制150内