《精品试题北师大版九年级数学下册第二章二次函数定向练习试题(含答案及详细解析).docx》由会员分享,可在线阅读,更多相关《精品试题北师大版九年级数学下册第二章二次函数定向练习试题(含答案及详细解析).docx(27页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、北师大版九年级数学下册第二章二次函数定向练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、抛物线y2(x+1)2不经过的象限是()A第一、二象限B第二、三象限C第三、四象限D第一、四象限2、将二次函数的
2、图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是( )ABCD3、下列函数中,是二次函数的是( )ABCD4、已知二次函数的图象如图所示,在下列五个结论中:;其中正确的个数有( )A1个B2个C3个D4个5、如图,抛物线与x轴交于点,对称轴为直线结合图象分析下列结论:;一元二次方程的两根分别为,;若为方程的两个根,则且其中正确的结论有( )个A2B3C4D56、在平面直角坐标系中,将抛物线yx24x向左平移3个单位,再向上平移5个单位,得到抛物线的表达式为()Ay(x+1)2+1By(x+1)29Cy(x5)2+1Dy(x5)297、若点A(1,y1),B(2,y2),C(m
3、,y3)在抛物线y=(a0)上,且y1y2y3,则m的值不可能是()A5B3C3D58、已知二次函数(m为常数),当时,函数值y的最小值为-2,则m的值为( )AB或C或D或9、如图,抛物线经过点,对称轴l如图所示,则下列结论:;,其中所有正确的结论是( )ABCD10、若抛物线与轴没有交点,则的取值范围是( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、二次函数(为常数)与轴的一个交点为(1,0),则另一个交点为_2、某件商品的销售利润y(元)与商品销售单价x(元)之间满足,不考虑其他因素,销售一件该商品的最大利润为_元3、若点,在抛物线上,则,的大小关系
4、为:_(填“”,“=”或“”)4、飞机着陆后滑行的距离(单位:米)关于滑行的时间t(单位:秒)的函数解析式是s60t1.5t2,则飞机停下前最后10秒滑行的距离是 _米5、抛物线位于轴左侧的部分是_的(填“上升”或“下降”)三、解答题(5小题,每小题10分,共计50分)1、已知二次函数的图像经过,求抛物线的解析式2、行驶中的汽车刹车后,由于惯性还会继续向前滑行一段距离,这段距离称为“刹车距离”某公司设计了M,N两款型号的新型汽车,它们在平坦路面上的“刹车距离”y(单位:m)与车速x(单位:km/h)之间的函数关系分别可以用二次函数(0x200),(0x200,b1)近似地表示为了估计a的值,公
5、司综合考虑各种路面情况,选择了六种有代表性的路面进行刹车试验,具体的数据如表:路面路面一路面二路面三路面四路面五路面六车速(km/h)100100100100100100刹车距离(m)26.527.227.527.529.230.1(1)依据上述数据,合理估计a的值,并求M款型号汽车的“刹车距离”为3.15m时所对应的车速;(2)当50x200时,是否存在实数b,使得在相同的车速下N款型号汽车的“刹车距离”始终比M款型号汽车的“刹车距离”小?若存在,求出相应的b的取值范围;若不存在,请说明理由3、如图所示,在坐标系xOy中,抛物线yx2+bx+c与x轴交于点A,B,与y轴交于点C,直线yx+8
6、经过A,C两点(1)求抛物线的解析式;(2)在AC上方的抛物线上有一动点P如图1,当点P运动到某位置时,以AP,AO为邻边的平行四边形第四个顶点恰好也在抛物线上,求出此时点P的坐标;如图2,过点O,P的直线ykx(k0)交AC于点E,若PE:OE5:6,求k的值4、已知抛物线(为常数),点A(-1,-1),B(3,7)(1)当抛物线经过点A时,求抛物线解析式和顶点坐标;(2)抛物线的顶点随着的变化而移动,当顶点移动到最高处时,求抛物线的解析式;在直线AB下方的抛物线上有一点E,过点E作EF轴,交直线AB于点F,求线段EF取最大值时的点E的坐标;(3)若抛物线与线段AB只有一个交点,求的取值范围
7、5、在中,P是边上任意一点,PEAB交于E,PFAC交于(1)求证:;(2)若,且边上的高,设,用含x的式子表示的面积;(3)问点P在上什么位置时,的面积最大?-参考答案-一、单选题1、C【分析】根据顶点式写出顶点坐标,开口向上,进而即可求得的答案【详解】解: y2(x+1)2,开口向上,顶点坐标为该函数不经过第三、四象限如图,故选C【点睛】本题考查了图象的性质,根据解析式求得开口方向和顶点坐标是解题的关键2、B【分析】将原二次函数整理为用顶点式表示的形式,根据二次函数的平移可得新抛物线的解析式【详解】解:变为:,向右平移1个单位得到的函数的解析式为:,即,再向上平移2个单位后,所得图象的函数
8、的解析式为,故选:B【点睛】本题考查了二次函数图象与几何变换讨论二次函数的图象的平移问题,只需看顶点坐标是如何平移得到的即可3、B【分析】根据二次函数的定义即可判断【详解】A. 是反比例函数,故此选项错误;B. 是二次函数,故此选项正确;C. 是一次函数,故此选项错误;D. 是正比例函数,故此选项错误故选:B【点睛】本题考查二次函数的定义:形如,其中,且a、b、c是常数,掌握二次函数的定义是解题的关键4、C【分析】由抛物线开口向上得a0,由抛物线的对称轴为直线x=-0得b0,判断;由抛物线与y轴的交点在x轴上方得c0判断,利用图象将x=1,-1,2代入函数解析式判断y的值,进而对所得结论进行判
9、断【详解】解:抛物线开口向上,a0,抛物线的对称轴x=-0,b0,-1,2a-b,2a-b-2b,b0,-2b0,即2a-b0,故错误;抛物线与y轴的交点在x轴下方,c0,故正确;当x=2时,y=4a+2b+c0,故正确,故错误的有3个故选:C【点睛】本题考查了二次函数图象与系数的关系,熟练利用数形结合得出是解题关键5、C【分析】根据二次函数图象的开口方向、对称轴、顶点坐标、增减性以及二次函数与一元二次方程的关系,逐项判断即可【详解】解:抛物线开口向下,因此a0,对称轴为x=10,因此a、b异号,所以b0,抛物线与y轴交点在正半轴,因此c0,所以abc0,故正确;当x=2时,y=4a+2b+c
10、0,故正确;抛物线与x轴交点(3,0),对称轴为x=1因此另一个交点坐标为(-1,0),所以a-b+c=0,又x=-=1,有2a+b=0,所以3a+c=0,而a0,c0,因此2a+c0,故不正确;由cx2+bx+a=0可得方程的解为和,抛物线与x轴交点(3,0),(-1,0),即方程ax2+bx+c=0的两根为x1=3,x2=-1;, 当时, 3a+c=0,c=-3a,cx2+bx+a=0的两根,x2=-1,故正确;抛物线y=ax2+bx+c与x轴交点(3,0),(-1,0),且a0,因此当y=-2时,相应的x的值大于3,或者小于-1,即m-1,n3,故正确;综上所述,正确的结论有:共4个,故
11、选:C【点睛】本题考查二次函数的图象和性质,掌握二次函数的a、b、c的值决定抛物线的位置是正确判断的关键6、A【分析】先将抛物线配方为顶点式,根据抛物线平移规律“左加右减,上加下减”解答即可【详解】解:将抛物线配方为顶点式,将抛物线先向左平移3个单位,再向上平移5个单位,得到的抛物线的解析式是y(x-2+3)24+5,即故选:A【点睛】本题考查抛物线的平移,熟练掌握抛物线平移规律是解答的关键7、C【分析】根据二次函数的解析式可得出二次函数的对称轴为x=-1,分两种情况讨论,根据图象上点的坐标特征,得到关于m的不等式,解不等式即可得出结论【详解】解:抛物线y=的对称轴为x=-1,点A(1,y1)
12、,B(2,y2),C(m,y3)在抛物线y=上,且y1y2y3,当a0,在对称轴的右侧y随x的增大而减小,点A、B都在对称轴右侧,而y1y2,所以这种情况不存在;当a0,则|m+1|(2+1)=3,解得m-4或m2,m的值不可能是-3故选:C【点睛】本题考查了二次函数图象上点的坐标特征,解题的关键是根据二次函数的性质找出关于m的一元一次不等式本题属于基础题,难度不大,解决该题型题目时,根据二次函数的性质结合二次函数的对称轴找出不等式是关键8、B【分析】将二次函数配方成顶点式,分m-2、m1和-2m1三种情况,根据y的最小值为-2,结合二次函数的性质求解可得【详解】解:y=x2-2mx=(x-m
13、)2-m2, 若m-2,当x=-2时取得最小值,此时y=4+4m=-2, 解得:m=; m=-2(舍去); 若m1,当x=1时取得最小值,y=1-2m=-2, 解得:m=; 若-2m1,当x=m时取得最小值,y=-m2=-2, 解得:或(舍), m的值为 或, 故选:B【点睛】本题主要考查二次函数的最值,根据二次函数的增减性分类讨论是解本题的关键9、D【分析】根据图像可知二次函数对称轴,可得;有;当时,;当时,;当时,;进而得出结果【详解】解:由图像可知,;故错误当时,;故正确当时,;故正确当时,;故正确故选D【点睛】本题考察了二次函数解题的关键在于求出系数的取值范围,以及一些特殊取值时函数值
14、的大小10、D【分析】根据题意得令,得,则,即可解得答案【详解】解:根据题意得令,解得故选:D【点睛】本题考查了抛物线与轴的交点:对于二次函数(,是常数,),令后,得到关于的一元二次方程,的情况决定了一元二次方程根的情况,相应的决定了抛物线与轴的交点个数二、填空题1、(-5,0)【分析】先确定抛物线的对称轴,然后利用二次函数的对称性确定抛物线与x轴的另一个交点坐标【详解】解:抛物线的对称轴为直线,而抛物线与x轴的一个交点为(-1,0),所以抛物线与x轴的另一个交点为(-5,0)故答案为:(-5,0)【点睛】本题考查了抛物线与x轴的交点,解答本题的关键是求出抛物线图象的对称轴,利用对称知识进行解
15、答,此题难度不大2、2【分析】知的最大值在时取得,值为【详解】解:根据函数图像性质可知在时,最大且取值为故答案为:【点睛】本题考查了二次函数实际应用中的最值问题解题的关键将二次函数化成顶点式3、【分析】利用二次函数图象上点的坐标特征可得出y1,y2的值,比较后即可得出结论【详解】解:若点A(1,y1),B(2,y2)在抛物线y=2x2上,y1=2(-1)2=2,y2=24=8,28,y1y2故答案为:.【点睛】本题考查了二次函数图象上点的坐标特征,利用二次函数图象上点的坐标特征求出y1,y2的值是解题的关键4、150【分析】将抛物线解析式化为顶点式,求出飞机滑行时间和距离,然后将t=2010代
16、入解析式求出对应y,然后作差求解【详解】解:,当时,飞机停下来,并滑行了600米;把,代入,得,机停下前最后10秒滑行的距离是:(米);故答案为:150;【点睛】本题考查二次函数的应用,解题关键是将抛物线化为顶点式,理解函数解析式与实际问题的对应关系5、上升【分析】根据二次函数图象的性质解答即可【详解】解:二次项系数-10时,抛物线开口向上,在对称轴的左侧y随x的增大而减小,在对称轴的右侧y随x的增大而增大;当a0时,抛物线开口向下,在对称轴的左侧y随x的增大而增大,在对称轴的右侧y随x的增大而减小三、解答题1、【分析】将(-1,0)、(3,0)两点坐标代入得到关于b、c的方程组,然后解方程组
17、即可【详解】解:把(-1,0)、(3,0)代入中得,解得,二次函数的解析式为【点睛】本题考查了用待定系数法求二次函数的解析式;在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解2、(1),当M款型号汽车的“刹车距离”为3.15m时所对应的车速;(2)存在,【分析】(1)先根据表格求出刹车距离的平均值,然后再代入函数解析式进行求解a即可,进而把代入求解即可;(2)由(1)及题意易得,即,当x=0时,则有,然后可得在恒成立,令,则有该函数的对称轴为直线,进而可分当时,当时,当时,最后分类求解即可【详解】解:(1)由表格得:m,解得:,把代入得:,解
18、得:(不符合题意,舍去),当M款型号汽车的“刹车距离”为3.15m时所对应的车速;(2)存在,理由如下:由(1)及题意得:,即,当x=0时,则有,令,则有该二次函数的图象在内,始终在x轴的上方,开口向上,对称轴为直线,当时,即,则有y随x的增大而增大,当时,则,解得:,;当时,即,则需满足顶点的纵坐标大于0即可,把代入解析式得:,化简得:,不符合题意,舍去;当时,即,则有y随x的增大而减小,将x=200代入解析式得:,解得:,不符合题意,舍去;综上所述:b的取值范围为【点睛】本题主要考查二次函数的应用,熟练掌握二次函数的图象与性质是解题的关键3、(1);(2);或k= - 10【分析】(1)由
19、直线的解析式yx4易求点A和点C的坐标,把A和C的坐标分别代入yx2+bx+c求出b和c的值即可得到抛物线的解析式;(2)若以AP,AO为邻边的平行四边形的第四个顶点Q恰好也在抛物线上,则PQAO,再根据抛物线的对称轴可求出点P的横坐标,由(1)中的抛物线解析式,进而可求出其纵坐标,问题得解;过P点作PFOC交AC于点F,因为PFOC,所以PEFOEC,由相似三角形的性质:对应边的比值相等可求出PF的长,进而可设点F(x,x8),利用(x2+bx+c)(x8),可求出x的值,解方程求出x的值可得点P的坐标,代入直线ykx即可求出k的值【详解】解:(1)直线yx8经过A,C两点,A点坐标是(8,
20、0),点C坐标是(0,8),又抛物线过A,C两点,解得:,;(2)如图1,由(1)知,抛物线解析式是,抛物线的对称轴是直线x以AP,AO为邻边的平行四边形的第四个顶点Q恰好也在抛物线上,PQAO,PQAO8P,Q都在抛物线上,P,Q关于直线x对称,P点的横坐标是,当x时,y,P点的坐标是(,);如图2,过P点作PFOC交AC于点F,PFOC,PEFOEC,又PE:OE5:6,OC8,PF,点F在AC上,设点F(x,x8),(x2-5x+8)(x8),化简得:(x4)2解得:x1,x2P点坐标是(,8)或(,)又点P在直线ykx上,把(,8)或(,)分别代入ykx中,k或k10【点睛】本题是二次
21、函数综合题,考查了待定系数法求函数解析式,平行四边形的判定和性质,相似三角形的判定和性质,解一元二次方程,题目综合性较强,难度不大,是一道很好的中考题4、(1)抛物线的解析式为:,顶点坐标为:;(2)函数解析式为 ;EF取得最大值时,;(3)m的取值范围为:或或【分析】(1)将点代入函数解析式求解确定,即可确定函数解析式,将解析式化解为顶点式即可得出顶点坐标;(2)写出抛物线的顶点坐标,进行整理,使顶点移动到最高处,即使顶点坐标的纵坐标最大,化简可得出,即可确定解析式;设直线AB的解析式为,将A、B两点代入解析式求解确定函数解析式,然后与抛物线解析式联立求解确定自变量的取值范围,设点,且,根据
22、题意,表示出,化为顶点式即可得出取得最大值时自变量的取值,然后代入函数解析式即可;(3)将一次函数与二次函数解析式联立求解可得,在线段AB上,根据题意中抛物线与线段AB只有一个交点,分三种情况讨论:抛物线与直线AB只有一个交点,即点M与点N重合;点N在线段AB的延长线上时;点N在线段BA的延长线上时,依次进行讨论求解即可得【详解】解:(1)将点代入函数解析式可得:,解得:,抛物线的解析式为:,顶点坐标为:;(2)抛物线的顶点坐标为:,整理可得,使顶点移动到最高处,即取得最大值,当时,取得最大值,此时函数解析式为:将代入可得:;如图所示:设直线AB的解析式为,将A、B两点代入解析式可得:,解得:
23、,直线解析式为:,将直线解析式与抛物线解析式联立可得:,解得:;,设点,且,当时,EF取得最大值,;(3),将代入可得:,整理可得:,抛物线与直线AB有交点,解方程,解得:,;,抛物线与直线AB的交点为:,将代入直线AB解析式,可得:,在直线AB上,在线段AB上,抛物线与线段AB只有一个交点,分三种情况讨论:抛物线与直线AB只有一个交点,如图所示,即点M与点N重合,;点N在线段AB的延长线上时,如图所示:,;点N在线段BA的延长线上时,如图所示:,;综上可得:m的取值范围为:或或【点睛】题目主要考查二次函数与一次函数的综合问题,待定系数法确定函数解析式,函数最值问题,二次函数图象的性质及分类讨论思想,熟练掌握二次函数的图象与性质,作出相应图象是解题关键5、(1)见解析;(2)(3)点位于的中点时,最大【分析】(1)根据两组对边分别平行,证明四边形是平行四边形即可得证;(2)根据已知条件先求得,根据平行线可得,根据面积比等于相似比,表示出,进而根据列出代数式即可;(3)根据(2)的结论,根据二次函数的性质即可求解【详解】(1)证明:PEAB,PFAC四边形是平行四边形;(2)解:,且边上的高, PEAB,四边形是平行四边形即(3)时,面积最大值为即点位于的中点时,最大【点睛】本题考查了平行四边形的性质与判定,相似三角形的性质与判定,求二次函数最值问题,根据题意分别表示出是解题的关键
限制150内