难点解析北师大版九年级数学下册第一章直角三角形的边角关系章节测评试题(含答案解析).docx
《难点解析北师大版九年级数学下册第一章直角三角形的边角关系章节测评试题(含答案解析).docx》由会员分享,可在线阅读,更多相关《难点解析北师大版九年级数学下册第一章直角三角形的边角关系章节测评试题(含答案解析).docx(26页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、九年级数学下册第一章直角三角形的边角关系章节测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,ABC的顶点在正方形网格的格点上,则cosACB的值为( )ABCD2、一个物体从A点出发,沿坡度为1
2、:7的斜坡向上直线运动到B,AB=30米时,物体升高()米AB3CD以上的答案都不对3、如图,在菱形ABCD中,则菱形ABCD的面积是( )A12B24C48D204、如图,在直角坐标平面内有一点,那么射线与轴正半轴的夹角的正切值是( )ABCD5、在中, . 下列线段的长度不能使的形状和大小都确定的是( )A2B4CD6、如图,滑雪场有一坡角为20的滑道,滑雪道的长AC为100米,则BC的长为()米AB100cos20CD100sin207、如图,将ABC放在每个小正方形的边长为1的网格中,点A,B,C均在格点上,则A的正切值是()ABC2D8、比较下图长方形内阴影部分面积的大小,甲( )乙
3、ABCD无法确定9、如图,在中,点D为AB边的中点,连接CD,若,则的值为( )ABCD10、cos60的值为()ABCD1第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图所示,河堤的横断面是四边形ABCD,ADBC,m,点A到BC的距离为m,斜坡AB的坡度为1:3,斜坡CD的坡角为45,则四边形ABCD的面积为_2、比较大小:tan46_cos463、如图,在平面直角坐标系中,有一个,ABO90,AOB30,直角边OB在y轴正半轴上,点A在第一象限,且OA1,将绕原点逆时针旋转30,同时把各边长扩大为原来的两倍(即OA12OA)得到,同理,将绕原点O逆时针旋转30
4、,同时把各边长扩大为原来的两倍,得到,依此规律,得到,则的长度为_4、如图, 在 中, 是斜边 上的中线, 点 是直线 左侧一点, 联结 , 若 , 则 的值为_5、如图,三角形纸片中,点D在边上,连接,使得,将这张纸片沿直线翻折,点C落在处,连接,且,若,则点A到直线的距离是_三、解答题(5小题,每小题10分,共计50分)1、6tan230sin602tan452、在中,为锐角且(1)求的度数;(2)求的正切值3、近日,市委、市政府公布了第七批重庆市爱国主义教育基地名单,重庆市育才中学创办的陶行知纪念馆位列其中如图,为了测量陶行知纪念馆的高度,小李在点处放置了高度为1.5米的测角仪,测得纪念
5、馆顶端点的仰角,然后他沿着坡度的斜坡走了6.5米到达点,再沿水平方向走4米就到达了纪念馆底端点(结果精确到0.1,参考数据:,)(1)求点到纪念馆的水平距离;(2)求纪念馆的高度约为多少米?4、在一次课题学习中,老师让同学们合作编题,某学习小组受赵爽弦图的启发,编写了下面这道题,请你来解一解:如图,将矩形ABCD的四边BA,CB,DC,AD分别延长至E,F,G,H,使得,连接EF,FG,GH,HE(1)判断四边形EFGH的形状,并证明;(2)若矩形ABCD是边长为1的正方形,且,求AE的长5、小明周末沿着东西走向的公路徒步游玩,在A处观察到电视塔在北偏东37度的方向上,5分钟后在B处观察到电视
6、塔在北偏西53度的方向上已知电视塔C距离公路AB的距离为300米,求小明的徒步速度(精确到个位,)-参考答案-一、单选题1、D【分析】根据图形得出AD的长,进而利用三角函数解答即可【详解】解:过A作ADBC于D,DC=1,AD=3,AC=,cosACB=,故选:D【点睛】本题主要考查了解直角三角形,解题的关键是掌握勾股定理逆定理及余弦函数的定义2、B【分析】根据坡度即可求得坡角的正弦值,根据三角函数即可求解;【详解】坡比在实际问题中的应用解:坡度为1:7,设坡角是,则sin=,上升的高度是:30米故选B【点睛】本题主要考查了解直角三角形的应用,准确分析计算是解题的关键3、B【分析】根据菱形的性
7、质可得ACBD,AO=CO=4,BO=DO,再根据正切函数的定义求出BD,进而可求出菱形的面积;【详解】解:四边形ABCD是菱形,ACBD,AO=CO=4,BO=DO,在直角三角形ABO中,BO=3,BD=6,菱形ABCD的面积=;故选:B【点睛】本题考查了菱形的性质、勾股定理和锐角三角函数的定义,属于基础题型,熟练掌握菱形的性质是解题的关键4、D【分析】作PMx轴于点M,构造直角三角形,根据三角函数的定义求解【详解】解:作PMx轴于点M,P(6,8),OM=6,PM=8,tan=故选:D【点睛】本题考查解直角三角形,解题的关键是学会添加常用辅助线,构造直角三角形解决问题5、A【分析】画出图形
8、,过点B作BDAC于点D,则可求得BD的长为,根据所给BC的长度与BD比较即可作出判断【详解】如图(1),过点B作BDAC于点D则故当BC=,即点D与点C重合时,ABC的形状和大小唯一确定,即C选项不符合题意;当BC=2时,如图(2),则BC1=BC2=2,此时ABC1与ABC2的形状和大小不相同,即选项A符合题意;当BC=时,ABC是等腰三角形,如图(3),此时ABC的形状与大小确定,故选项D不符合题意;当BC=4时,如图(4),ABC是钝角三角形,形状与大小确定,故选项B不符合题意;故选:A【点睛】本题考查了锐角三角函数及三角形形状的确定,关键是作BDAC,把BC与BD进行比较6、B【分析
9、】首先根据坡角的概念得到,然后由的余弦值可得,代入AC的值求解即可【详解】解:滑道坡角为20,AC为100米,故选:B【点睛】此题考查了解三角形的实际应用,解题的关键是熟练掌握锐角三角函数的表示方法7、D【分析】首先构造以A为锐角的直角三角形,然后利用正切的定义即可求解【详解】解:连接BD,则BD,AD2,则tanA故选D【点睛】本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边,构造直角三角形是本题的关键8、C【分析】如图,在三角形中,等底等高的两个三角形的面积相等,由此可得三角形1面积=三角形2面积,三角形3面积=三角形4面积,根据
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 难点 解析 北师大 九年级 数学 下册 第一章 直角三角形 边角 关系 章节 测评 试题 答案
限制150内