2021_2021学年新教材高中数学模块素养检测一含解析新人教B版选择性必修第二册.doc
《2021_2021学年新教材高中数学模块素养检测一含解析新人教B版选择性必修第二册.doc》由会员分享,可在线阅读,更多相关《2021_2021学年新教材高中数学模块素养检测一含解析新人教B版选择性必修第二册.doc(12页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、模块素养检测(一)(120分钟150分)一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求的)1.若随机变量XN(3,2),且P(X5)=0.2,则P(1X5)等于()A.0.6B.0.5C.0.4D.0.3【解析】选A.由于XN(3,2),则正态密度曲线关于直线x=3对称,所以P(1X5)=1-2P(X5)=1-20.2=0.6.2.通过随机询问200名性别不同的大学生是否爱好踢毽子运动,计算得到统计量24.892,参照附表,得到的正确结论是()P(2k)0.100.050.025k2.7063.8415.024A.有97.5%以上的把握认为
2、“爱好该项运动与性别有关”B.有97.5%以上的把握认为“爱好该项运动与性别无关”C.在犯错误的概率不超过5%的前提下,认为“爱好该项运动与性别有关”D.在犯错误的概率不超过5%的前提下,认为“爱好该项运动与性别无关”【解析】选C.因为计算得到统计量24.8923.841,参照题目中的数值表,得到正确的结论是:在犯错误的概率不超过5%的前提下,认为“爱好该运动与性别有关”.3.(2020新高考全国卷)6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有()A.120种B.90种C.60种D.30种【解析】选C.甲场馆安
3、排1名有种方法,乙场馆安排2名有种方法,丙场馆安排3名有种方法,所以由分步乘法计数原理得不同的安排方法共有=60种.4.的展开式中x的系数为()A.-80B.-40C.40D.80【解析】选D.的展开式的通项为Tr+1=(2x)5-r=(-1)r25-rx5-2r,令5-2r=1,得r=2,所以的展开式中x的系数为(-1)225-2=80.5.概率论起源于博弈游戏.17世纪,曾有一个“赌金分配”的问题:博弈水平相当的甲、乙两人进行博弈游戏,每局比赛都能分出胜负,没有平局.双方约定,各出赌金48枚金币,先赢3局者可获得全部赌金;但比赛中途因故终止了,此时甲赢了2局,乙赢了1局.问这96枚金币的赌
4、金该如何分配?数学家费马和帕斯卡都用了现在称之为“概率”的知识,合理地给出了赌金分配方案.该分配方案是()A.甲48枚,乙48枚B.甲64枚,乙32枚C.甲72枚,乙24枚D.甲80枚,乙16枚【解析】选C.根据题意,甲、乙两人每局获胜的概率均为,假设两人继续进行比赛,甲获取96枚金币的概率P1=+=,乙获取96枚金币的概率P2=,则甲应该获得96=72枚金币;乙应该获得96=24枚金币.6.先后投掷骰子(骰子的六个面分别标有1,2,3,4,5,6个点)两次落在水平桌面后,记正面朝上的点数分别为x,y,设事件A为“x+y为偶数”,事件B为“x,y中有偶数且xy”,则概率P(B|A)=()A.B
5、.C.D.【解析】选A.事件A为“x+y为偶数”,所以x,y同奇同偶,共包含232=18个基本事件;事件A,B同时发生,则x,y都为偶数,且xy,则包含=6个基本事件,所以P(B|A)=.7.中国古代的“礼、乐、射、御、书、数”合称“六艺”.“礼”,主要指德育;“乐”,主要指美育;“射”和“御”,就是体育和劳动;“书”,指各种历史文化知识;“数”,指数学.某校国学社团开展“六艺”课程讲座活动,每艺安排一节,连排六节,一天课程讲座排课有如下要求:“数”必须排在第三节,且“射”和“御”两门课程相邻排课,则“六艺”课程讲座不同的排课顺序共有()A.12种B.24种C.36种D.48种【解析】选C.由
6、题意,“数”排在第三节,则“射”和“御”两门课程相邻时,可排在第1节和第2节或第4节和第5节或第5节和第6节,有3种,再考虑两者的顺序,有=2种,剩余的3门全排列,安排在剩下的3个位置,有=6种,所以“六艺”课程讲座不同的排课顺序共有326=36种.8.已知变量y关于x的回归方程为=ebx-0.5,其一组数据如下表所示:x1234yee3e4e6若x=5,则预测y的值可能为()A.e5B.C.e7D.【解析】选D.由=ebx-0.5,得ln =bx-0.5,令z=ln ,则z=bx-0.5.x1234z1346=2.5,=3.5,因为(,)满足z=bx-0.5,所以3.5=b2.5-0.5,解
7、得b=1.6,所以z=1.6x-0.5,所以=e1.6x-0.5,当x=5时,=e1.65-0.5=.二、多项选择题(本大题共4小题,每小题5分,共20分,在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,选对但不全的得3分,有选错的得0分)9.若(2x+1)10=a0+a1x+a2x2+a10x10,xR,则()A.a0=1B.a0=0C.a0+a1+a2+a10=310D.a0+a1+a2+a10=3【解析】选AC.因为(2x+1)10=a0+a1x+a2x2+a10x10,xR,令x=0得a0=1,故A正确.令x=1得a0+a1+a2+a10=310,故C正确.10.甲罐中
8、有3个红球、2个白球,乙罐中有4个红球、1个白球,先从甲罐中随机取出1个球放入乙罐,分别以A1,A2表示由甲罐中取出的球是红球、白球的事件,再从乙罐中随机取出1个球,以B表示从乙罐中取出的球是红球的事件,下列命题正确的是()A.P(B)=B.事件B与事件A1相互独立C.事件B与事件A2相互独立D.A1,A2互斥【解析】选AD.根据题意画出树状图,得到有关事件的样本点数因此P=,P=,P(B)=,A正确;又P(A1B)=,因此PPP(B),B错误;同理C错误;A1,A2不可能同时发生,故彼此互斥,故D正确.11.已知由样本数据点(xi,yi)(i=1,2,n)求得的回归直线方程为=1.5x+0.
9、5,且=3,现发现两个数据点(1.2,2.2)和(4.8,7.8)误差较大,去除后重新求得的回归直线l的斜率为1.2,则()A.变量x与y具有正相关关系B.去除后的回归方程为=1.2x+1.4C.去除后y的估计值增加速度变快D.去除后相应的相关系数绝对值增大【解析】选ABD.因为回归直线方程为=1.5x+0.5,1.50,所以变量x与y具有正相关关系,故A正确.当=3时,=31.5+0.5=5,样本点中心为(3,5),去掉两个数据点(1.2,2.2)和(4.8,7.8)后,样本点中心还是(3,5),又因为去除后重新求得的回归直线l的斜率为1.2,所以5=31.2+a,解得a=1.4,所以去除后
10、的回归方程为=1.2x+1.4,故B正确.因为1.51.2,所以去除后y的估计值增加速度变慢,故C错误.因为去除两点后相关性更强,所以相关系数的绝对值变大,故D正确.12.将四个不同的小球放入三个分别标有1,2,3号的盒子中,不允许有空盒子的放法有多少种?下列结论正确的有()A.B.C.D.18【解析】选BC.根据题意,四个不同的小球放入三个分别标有13号的盒子中,且没有空盒,则三个盒子中有1个中放2个球,剩下的2个盒子中各放1个,有2种解法:(1)分2步进行分析:先将四个不同的小球分成3组,有种分组方法;将分好的3组全排列,对应放到3个盒子中,有种放法;则没有空盒的放法有种;(2)分2步进行
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021 _2021 学年 新教材 高中数学 模块 素养 检测 解析 新人 选择性 必修 第二
限制150内