2021-2021学年高中数学 2.1.2 空间中直线与直线之间的位置关系学案 新人教A版必修2.doc
《2021-2021学年高中数学 2.1.2 空间中直线与直线之间的位置关系学案 新人教A版必修2.doc》由会员分享,可在线阅读,更多相关《2021-2021学年高中数学 2.1.2 空间中直线与直线之间的位置关系学案 新人教A版必修2.doc(3页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2.1.2 空间中直线与直线之间的位置关系课前预习学案一预习目标:明确直线间的位置关系 二预习内容:2.1.2课本内容思考:空间两条直线有多少种位置关系三、提出疑惑同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中疑惑点疑惑内容课内探究学案一 学习目标 (1)了解空间中两条直线的位置关系;(2)理解异面直线的概念、画法,培养学生的空间想象能力;(3)理解并掌握公理4; (4)理解并掌握等角定理;(5)异面直线所成角的定义、范围及应用。学习重点:1、异面直线的概念; 2、公理4及等角定理。学习难点:异面直线所成角的计算。二 学习过程 1 共面直线 相交直线:同一平面内,有且只有一个
2、公共点平行直线:同一平面内,没有公共点;异面直线: 不同在任何一个平面内,没有公共点。2.以教师讲授为主,师生共同交流,导出异面直线所成的角的概念。(1)师:如图,已知异面直线a、b,经过空间中任一点O作直线aa、bb,我们把a与b所成的锐角(或直角)叫异面直线a与b所成的角(夹角)。(2)强调: a与b所成的角的大小只由a、b的相互位置来确定,与O的选择无关,为了简便,点O一般取在两直线中的一条上; 两条异面直线所成的角(0, ); 当两条异面直线所成的角是直角时,我们就说这两条异面直线互相垂直,记作ab; 注意:两条直线互相垂直,有共面垂直与异面垂直两种情形; 计算中,通常把两条异面直线所
3、成的角转化为两条相交直线所成的角例1空间四边形 ABCD中,E.F.G.H分别是AB.BC.CD.DA的中点求证:四边形EFGH是平行四边形变式:在例1中如果加上条件AC=BD,那么四边形EFGH是什么图形?例2已知正方体ABCD-A1B1C1D1,(1) 哪些棱所在直线与直线BA1是异面直线?(2) 哪些棱所在的直线与AA1垂直?变式:在正方体ABCD-ABCD的所有棱中,与BD成异面直线的有 _ 条。(6条)课后练习与提高一选择题1.垂直于两条异面直线的直线有( )条A 1 B2 C无数 D以上都不对EAFBCMND2.两线段AB、CD不在同一平面内,如果AC=BD,AD=BC,则AB与CD( ) A 垂直 B平行 C相交 D以上都不对3右图是正方体平面展开图,在这个正方体中BM与ED平行;CN与BE是异面直线;CN与BM成60角;DM与BN垂直.以上四个命题中,正确命题的序号是( )(A)(B)(C)(D)二填空题4.在正方体中,相邻两侧面的一对异面的对角线所成的角为_5. 空间四边形中,分别是的中点,求异面直线所成的角为_三解答题6. 在正方体ABCDA1B1C1D1中,求(1)A1B与B1D1所成角;(2)AC与BD1所成角.翰林汇翰林汇- 3 -
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021-2021学年高中数学 2.1.2 空间中直线与直线之间的位置关系学案 新人教A版必修2 2021 学年 高中数学 2.1 空间 直线 之间 位置 关系学 新人 必修
链接地址:https://www.taowenge.com/p-30794437.html
限制150内