2021届高三数学二轮复习 专题四 第2讲 空间中的平行与垂直教案.doc
《2021届高三数学二轮复习 专题四 第2讲 空间中的平行与垂直教案.doc》由会员分享,可在线阅读,更多相关《2021届高三数学二轮复习 专题四 第2讲 空间中的平行与垂直教案.doc(10页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第2讲空间中的平行与垂直自主学习导引真题感悟1(2012浙江)设l是直线,、是两个不同的平面A若l,l,则B若l,l,则C若,l,则lD若,l,则l解析利用线与面、面与面的关系定理判定,用特例法设a,若直线la,且l,l,则l,l,因此不一定平行于,故A错误;由于l,故在内存在直线ll,又因为l,所以l,故,所以B正确;若,在内作交线的垂线l,则l,此时l在平面内,因此C错误;已知,若a,la,且l不在平面,内,则l且l,因此D错误答案B2(2012江苏)如图,在直三棱柱ABCA1B1C1中,A1B1A1C1,D、E分别是棱BC、CC1上的点(点D不同于点C),且ADDE,F为B1C1的中点求
2、证:(1)平面ADE平面BCC1B1;(2)直线A1F平面ADE.证明(1)因为ABC A1B1C1是直三棱柱,所以C C1平面ABC.又AD平面ABC,所以C C1AD.又因为ADDE,C C1,DE平面BC C1 B1,C C1DEE,所以AD平面BC C1 B1.又AD平面ADE,所以平面ADE平面BC C1 B1. (2)因为A1 B1A1 C1,F为B1 C1的中点,所以A1FB1 C1.因为C C1平面A1 B1 C1,且A1F平面A1 B1 C1,所以C C1A1F.又因为C C1,B1 C1平面BC C1 B1,C C1B1 C1C1,所以A1F平面BC C1 B1.由(1)知
3、AD平面BC C1 B1,所以A1FAD.又AD平面ADE,A1F平面ADE,所以A1F平面ADE考题分析空间线面位置关系的判定与证明是高考的必考考点,多以选择题与解答题的形式出现,难度中等,解答高考题时,推理过程不完整是失分的重要原因,需引起特别注意网络构建高频考点突破考点一:线线、线面的平行与垂直【例1】如图,在平行四边形ABCD中,CD1,BCD60,且BDCD,正方形ADEF所在平面与平面ABCD垂直,G、H分别是DF、BE的中点(1)求证:BD平面CDE;(2)求证:GH平面CDE;(3)求三棱锥DCEF的体积审题导引(1)先证BDED,BDCD,可证BD平面CDE;(2)由GHCD
4、可证GH平面CDE;(3)变换顶点,求VCDEF.规范解答(1)证明四边形ADEF是正方形,EDAD,又平面ADEF平面ABCD,平面ADEF平面ABCDAD.ED平面ABCD,EDBD.又BDCD,且EDDCD,BD平面CDE.(2)证明G是DF的中点,又易知H是FC的中点,在FCD中,GHCD,又CD平面CDE,GH平面CDE,GH平面CDE.(3)设RtBCD中,BC边上的高为h,CD1,BCD60,BDCD,BC2,BD,2h1,h,即点C到平面DEF的距离是,VDCEFVCDEF22.【规律总结】线线、线面位置关系证法归纳(1)证线线平行常用的方法:一是利用平行公理,即证两直线同时和
5、第三条直线平行;二是利用平行四边形进行平行转换;三是利用三角形的中位线定理证线线平行;四是利用线面平行、面面平行的性质定理进行平行转换(2)证线面平行常用的两种方法:一是利用线面平行的判定定理,把证线面平行转化为证线线平行;二是利用面面平行的性质,把证线面平行转化为证面面平行(3)证线面垂直常用的方法:一是利用线面垂直的判定定理,把证线面垂直转化为证线线垂直;二是利用面面垂直的性质定理,把证面面垂直转化为证线面垂直;另外还要注意利用教材中的一些结论,如:两条平行线中的一条垂直于一个平面,则另一条也垂直于这个平面等【变式训练】1(2012山东实验中学一诊)如图,在几何体ABCDEP中,底面ABC
6、D是边长为4的正方形,PA平面ABCD,PAEB,且PA2BE4.(1)证明:BD平面PEC;(2)若G为BC上的动点,求证:AEPG.证明(1)连接AC交BD于点O,取PC的中点F,连接OF,EF,EBPA,且EBPA,又OFPA,且OFPA,EBOF,且EBOF,四边形EBOF为平行四边形,EFBD.又EF平面PEC,BD平面PEC,BD平面PEC.(2)连接BP,EBABAP90,EBABAP,PBABEA,PBABAEBEABAE90,PBAE.PA平面ABCD,PA平面APEB,平面ABCD平面APEB,BCAB,平面ABCD平面APEBAB,BC平面APEB,BCAE,AE平面PB
7、C,G为BC上的动点,PG平面PBC,AEPG.考点二:面面平行与垂直【例2】如图所示,已知在三棱锥ABPC中,APPC,ACBC,M为AB的中点,D为PB的中点,且PMB为正三角形(1)求证:DM平面APC;(2)求证:平面ABC平面APC;(3)若BC4,AB20,求三棱锥DBCM的体积审题导引(1)只要证明MDAP即可,根据三角形中位线定理可证;(2)证明APBC;(3)根据锥体体积公式进行计算规范解答(1)证明由已知,得MD是ABP的中位线,所以MDAP.又MD平面APC,AP平面APC,故MD平面APC.(2)证明因为PMB为正三角形,D为PB的中点,所以MDPB.所以APPB.又A
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021届高三数学二轮复习 专题四 第2讲 空间中的平行与垂直教案 2021 届高三 数学 二轮 复习 专题 空间 中的 平行 垂直 教案
限制150内