2021年全国高考数学第二轮复习 专题七 概率与统计第2讲 概率、统计与统计案例 理.doc
《2021年全国高考数学第二轮复习 专题七 概率与统计第2讲 概率、统计与统计案例 理.doc》由会员分享,可在线阅读,更多相关《2021年全国高考数学第二轮复习 专题七 概率与统计第2讲 概率、统计与统计案例 理.doc(9页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、专题七概率与统计第2讲概率、统计与统计案例真题试做1(2012山东高考,理4)采用系统抽样方法从960人中抽取32人做问卷调查为此将他们随机编号为1,2,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间1,450的人做问卷A,编号落入区间451,750的人做问卷B,其余的人做问卷C.则抽到的人中,做问卷B的人数为()A7 B9 C10 D152(2012陕西高考,理6)从甲乙两个城市分别随机抽取16台自动售货机,对其销售额进行统计,统计数据用茎叶图表示(如图所示)设甲乙两组数据的平均数分别为,中位数分别为,则()A,B,C,D,3(2012广东高考,理7
2、)从个位数与十位数之和为奇数的两位数中任取一个,其个位数为0的概率是()A BC D4(2012湖北高考,理20)根据以往的经验,某工程施工期间的降水量X(单位:mm)对工期的影响如下表:降水量XX300300X700700X900X900工期延误天数Y02610历年气象资料表明,该工程施工期间降水量X小于300,700,900的概率分别为0.3,0.7,0.9.求:(1)工期延误天数Y的均值与方差;(2)在降水量X至少是300的条件下,工期延误不超过6天的概率考向分析概率部分主要考查了概率的概念、条件概率、互斥事件的概率加法公式、对立事件概率的求法,以及古典概型与几何概型的计算,均属容易题统
3、计部分选择题、填空题都是独立考查本节知识,解答题均与概率的分布列综合预测下一步概率部分会更加注重实际问题背景,考查分析、推理能力;统计部分在直方图、茎叶图、相关性部分等都可单独命题,且多为一个小题,解答题仍会与分布列结合热点例析热点一随机事件的概率【例】(2012江西高考,理18)如图,从A1(1,0,0),A2(2,0,0),B1(0,1,0),B2(0,2,0),C1(0,0,1),C2(0,0,2)这6个点中随机选取3个点,将这3个点及原点O两两相连构成一个“立体”,记该“立体”的体积为随机变量V(如果选取的3个点与原点在同一个平面内,此时“立体”的体积V0)(1)求V0的概率;(2)求
4、V的分布列及数学期望E(V)规律方法高考中,概率解答题一般有两大方向一、以频率分布直方图为载体,考查统计学中常见的数据特征:如平均数、中位数、频数、频率等或古典概型;二、以应用题为载体,考查条件概率、独立事件的概率、随机变量的期望与方差等需要注意第一种方向的考查变式训练1(2012北京昌平二模,理16)某游乐场将要举行狙击移动靶比赛比赛规则是:每位选手可以选择在A区射击3次或选择在B区射击2次,在A区每射中一次得3分,射不中得0分;在B区每射中一次得2分,射不中得0分已知参赛选手甲在A区和B区每次射中移动靶的概率分别是和p(0p1)(1)若选手甲在A区射击,求选手甲至少得3分的概率;(2)我们
5、把在A、B两区射击得分的数学期望高者作为选择射击区的标准,如果选手甲最终选择了在B区射击,求p的取值范围热点二古典概型与几何概型【例】(2012北京高考,理2)设不等式组表示的平面区域为D.在区域D内随机取一个点,则此点到坐标原点的距离大于2的概率是()ABCD规律方法较为简单的问题可以直接使用古典概型公式计算,较为复杂的概率问题的处理方法:一是转化为几个互斥事件的和,利用互斥事件的加法公式进行求解;二是采用间接解法,先求事件A的对立事件的概率,再由P(A)1P()求事件A的概率变式训练2(1)在长为18 cm的线段AB上任取一点M,并以线段AM为边作正方形,则这个正方形的面积介于36 cm2
6、与81 cm2之间的概率为()A B C D(2)先后抛掷两枚均匀的正方体骰子(它们的六个面分别标有点数1,2,3,4,5,6),骰子朝上的面的点数分别为X,Y,则log 2XY1的概率为()A B C D热点三线性相关【例】设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(xi,yi)(i1,2,n),用最小二乘法建立的回归方程为y0.85x85.71,则下列结论中不正确的是()Ay与x具有正的线性相关关系B回归直线过样本点的中心(,)C若该大学某女生身高增加1 cm,则其体重约增加0.85 kgD若该大学某女生身高为170 cm,则可断定其体重必为
7、58.79 kg规律方法线性回归的基本思想及应用主要按以下步骤完成:画散点图,检验是否线性相关;数据计算,求回归方程;利用回归方程,进行科学预测变式训练3假设关于某设备的使用年限x和所支出的维修费用y(万元)有如下的统计资料:使用年限x23456维修费用y2.23.85.56.57.0若由资料知y对x呈线性相关关系试求:(1)线性回归方程x的回归系数,;(2)估计使用年限为10年时,维修费用是多少?热点四独立性检验【例】为了普及环保知识,增强环保意识,某大学从理工类专业的A班和文史类专业的B班各抽取20名同学参加环保知识测试两个班同学的成绩(百分制)的茎叶图如图所示:按照大于或等于80分为优秀
8、,80分以下为非优秀统计成绩(1)根据以上数据完成下面的22列联表:成绩与专业列联表优秀非优秀总计A班20B班20总计40(2)能否有95%的把握认为环保知识测试成绩与专业有关?附:K2P(K2k)0.0500.0100.001k3.8416.63510.828规律方法独立性检验是指利用22列联表,通过计算随机变量K2来确定在多大程度上两个分类变量有关系的方法K2值越大,说明两个分类变量X与Y有关系的可能性越大要会用倍度表判断X与Y有关系的可信程度变式训练4为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如下:(1)估计该地区老年人中,需要志愿者提
9、供帮助的老年人的比例;(2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?附:P(K2k)0.0500.0100.001k3.8416.63510.828K2的观测值k.思想渗透数形结合思想解答统计问题用数形结合思想解答的统计问题主要有:(1)通过频率分布直方图研究数据分布的总体趋势(2)根据样本数据散点图确定两个变量是否存在相关关系求解时注意的问题:(1)频率分布直方图中纵轴表示,每个小长方形的面积等于这一组的频率(2)在频率分布直方图中,组距是一个固定值,故各小长方形高的比就是频率之比【典型例题】下表给出了某校120名12岁男孩的身高资料(单位:cm)区间界限122
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021年全国高考数学第二轮复习 专题七 概率与统计第2讲 概率、统计与统计案例 2021 全国 高考 数学 二轮 复习 专题 概率 统计 案例
限制150内