2021届中考数学总复习 十七 二次函数精练精析2 华东师大版.doc
《2021届中考数学总复习 十七 二次函数精练精析2 华东师大版.doc》由会员分享,可在线阅读,更多相关《2021届中考数学总复习 十七 二次函数精练精析2 华东师大版.doc(20页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、函数二次函数2一选择题(共9小题)1二次函数y=ax2+bx+c(a0)的图象如图,给出下列四个结论:4acb20;4a+c2b;3b+2c0;m(am+b)+ba(m1),其中正确结论的个数是()A4个B3个C2个D1个2如图是二次函数y=ax2+bx+c的图象的一部分,对称轴是直线x=1b24ac; 4a2b+c0;不等式ax2+bx+c0的解集是x3.5;若(2,y1),(5,y2)是抛物线上的两点,则y1y2上述4个判断中,正确的是()ABCD3二次函数y=ax2+bx+c(a0)的图象如图所示,则下列结论中正确的是()Ac1Bb0C2a+b0D9a+c3b4如图,二次函y=ax2+b
2、x+c(a0)图象的一部分,对称轴为直线x=,且经过点(2,0),下列说法:abc0;a+b=0;4a+2b+c0;若(2,y1),(,y2)是抛物线上的两点,则y1y2,其中说法正确的是()ABCD5如图是二次函数y=ax2+bx+c图象的一部分,且过点A(3,0),二次函数图象的对称轴是x=1,下列结论正确的是()Ab24acBac0Cab+c0D4a+2b+c06二次函数y=ax2+bx1(a0)的图象经过点(1,1),则代数式1ab的值为()A3B1C2D57将抛物线y=x2平移得到抛物线y=(x+2)2,则这个平移过程正确的是()A向左平移2个单位B向右平移2个单位C向上平移2个单位
3、D向下平移2个单位8将抛物线y=(x1)2+3向左平移1个单位,得到的抛物线与y轴的交点坐标是()A(0,2)B(0,3)C(0,4)D(0,7)9如果将抛物线y=x2向右平移1个单位,那么所得的抛物线的表达式是()Ay=x21By=x2+1Cy=(x1)2Dy=(x+1)2二填空题(共6小题)10某厂今年一月份新产品的研发资金为a元,以后每月新产品的研发资金与上月相比增长率都是x,则该厂今年三月份新产品的研发资金y(元)关于x的函数关系式为y=_11如图是一个横断面为抛物线形状的拱桥,当水面宽4米时,拱顶(拱桥洞的最高点)离水面2米,水面下降1米时,水面的宽度为_米12如图的一座拱桥,当水面
4、宽AB为12m时,桥洞顶部离水面4m,已知桥洞的拱形是抛物线,以水平方向为x轴,建立平面直角坐标系,若选取点A为坐标原点时的抛物线解析式是y=(x6)2+4,则选取点B为坐标原点时的抛物线解析式是_13某种商品每件进价为20元,调查表明:在某段时间内若以每件x元(20x30,且x为整数)出售,可卖出(30x)件若使利润最大,每件的售价应为_元14如图,是二次函数y=ax2+bx+c图象的一部分,其对称轴为直线x=1,若其与x轴一交点为A(3,0),则由图象可知,不等式ax2+bx+c0的解集是_15请写出一个以直线x=2为对称轴,且在对称轴左侧部分是上升的抛物线的表达式,这条抛物线的表达式可以
5、是_三解答题(共8小题)16如图,抛物线y=ax2+2x+c经过点A(0,3),B(1,0),请解答下列问题:(1)求抛物线的解析式;(2)抛物线的顶点为点D,对称轴与x轴交于点E,连接BD,求BD的长注:抛物线y=ax2+bx+c(a0)的顶点坐标是(,)17如图,二次函数的图象与x轴交于A(3,0)和B(1,0)两点,交y轴于点C(0,3),点C、D是二次函数图象上的一对对称点,一次函数的图象过点B、D(1)请直接写出D点的坐标(2)求二次函数的解析式(3)根据图象直接写出使一次函数值大于二次函数值的x的取值范围18已知二次函数y=x24x+3(1)用配方法求其图象的顶点C的坐标,并描述该
6、函数的函数值随自变量的增减而变化的情况;(2)求函数图象与x轴的交点A,B的坐标,及ABC的面积19如图,抛物线y=x2+2x+c与x轴交于A,B两点,它的对称轴与x轴交于点N,过顶点M作MEy轴于点E,连结BE交MN于点F,已知点A的坐标为(1,0)(1)求该抛物线的解析式及顶点M的坐标(2)求EMF与BNF的面积之比20实验数据显示,一般成人喝半斤低度白酒后,1.5小时内其血液中酒精含量y(毫克/百毫升)与时间x(时)的关系可近似地用二次函数y=200x2+400x刻画;1.5小时后(包括1.5小时)y与x可近似地用反比例函数y=(k0)刻画(如图所示)(1)根据上述数学模型计算:喝酒后几
7、时血液中的酒精含量达到最大值?最大值为多少?当x=5时,y=45,求k的值(2)按国家规定,车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升时属于“酒后驾驶”,不能驾车上路参照上述数学模型,假设某驾驶员晚上20:00在家喝完半斤低度白酒,第二天早上7:00能否驾车去上班?请说明理由21在2014年巴西世界杯足球赛前夕,某体育用品店购进一批单价为40元的球服,如果按单价60元销售,那么一个月内可售出240套根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高5元,销售量相应减少20套设销售单价为x(x60)元,销售量为y套(1)求出y与x的函数关系式(2)当销售单价为多少元时,月
8、销售额为14000元;(3)当销售单价为多少元时,才能在一个月内获得最大利润?最大利润是多少?参考公式:抛物线y=ax2+bx+c(a0)的顶点坐标是22某研究所将某种材料加热到1000时停止加热,并立即将材料分为A、B两组,采用不同工艺做降温对比实验,设降温开始后经过x min时,A、B两组材料的温度分别为yA、yB,yA、yB与x的函数关系式分别为yA=kx+b,yB=(x60)2+m(部分图象如图所示),当x=40时,两组材料的温度相同(1)分别求yA、yB关于x的函数关系式;(2)当A组材料的温度降至120时,B组材料的温度是多少?(3)在0x40的什么时刻,两组材料温差最大?23某经
9、销商销售一种产品,这种产品的成本价为10元/千克,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于18元/千克,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)之间的函数关系如图所示:(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)求每天的销售利润W(元)与销售价x(元/千克)之间的函数关系式当销售价为多少时,每天的销售利润最大?最大利润是多少?(3)该经销商想要每天获得150元的销售利润,销售价应定为多少?函数二次函数2参考答案与试题解析一选择题(共9小题)1二次函数y=ax2+bx+c(a0)的图象如图,给出下列四个结论:4acb20;4a+c2
10、b;3b+2c0;m(am+b)+ba(m1),其中正确结论的个数是()A4个B3个C 2个D1个考点:二次函数图象与系数的关系专题:数形结合分析:利用二次函数图象的相关知识与函数系数的联系,需要根据图形,逐一判断解答:解:抛物线和x轴有两个交点,b24ac0,4acb20,正确;对称轴是直线x=1,和x轴的一个交点在点(0,0)和点(1,0)之间,抛物线和x轴的另一个交点在(3,0)和(2,0)之间,把(2,0)代入抛物线得:y=4a2b+c0,4a+c2b,错误;把(1,0)代入抛物线得:y=a+b+c0,2a+2b+2c0,b=2a,3b+2c0,正确;抛物线的对称轴是直线x=1,y=a
11、b+c的值最大,即把x=m(m1)代入得:y=am2+bm+cab+c,am2+bm+ba,即m(am+b)+ba,正确;即正确的有3个,故选:B点评:此题主要考查了二次函数图象与系数的关系,在解题时要注意二次函数的系数与其图象的形状,对称轴,特殊点的关系,也要掌握在图象上表示一元二次方程ax2+bx+c=0的解的方法,同时注意特殊点的运用2如图是二次函数y=ax2+bx+c的图象的一部分,对称轴是直线x=1b24ac; 4a2b+c0;不等式ax2+bx+c0的解集是x3.5;若(2,y1),(5,y2)是抛物线上的两点,则y1y2上述4个判断中,正确的是()ABCD考点:二次函数图象与系数
12、的关系;二次函数图象上点的坐标特征;二次函数与不等式(组)专题:数形结合分析:根据抛物线与x轴有两个交点可得b24ac0,进而判断正确;根据题中条件不能得出x=2时y的正负,因而不能得出正确;如果设ax2+bx+c=0的两根为、(),那么根据图象可知不等式ax2+bx+c0的解集是x或x,由此判断错误;先根据抛物线的对称性可知x=2与x=4时的函数值相等,再根据二次函数的增减性即可判断正确解答:解:抛物线与x轴有两个交点,b24ac0,b24ac,故正确; x=2时,y=4a2b+c,而题中条件不能判断此时y的正负,即4a2b+c可能大于0,可能等于0,也可能小于0,故错误;如果设ax2+bx
13、+c=0的两根为、(),那么根据图象可知不等式ax2+bx+c0的解集是x或x,故错误;二次函数y=ax2+bx+c的对称轴是直线x=1,x=2与x=4时的函数值相等,45,当抛物线开口向上时,在对称轴的右边,y随x的增大而增大,y1y2,故正确故选:B点评:主要考查图象二次函数图象与系数的关系,二次函数图象上点的坐标特征,二次函数的性质,以及二次函数与不等式的关系,根的判别式的熟练运用3二次函数y=ax2+bx+c(a0)的图象如图所示,则下列结论中正确的是()Ac1Bb0C2a+b0D9a+c3b考点:二次函数图象与系数的关系专题:压轴题;数形结合分析:由抛物线与y轴的交点在点(0,1)的
14、下方得到c1;由抛物线开口方向得a0,再由抛物线的对称轴在y轴的右侧得a、b异号,即b0;根据抛物线的对称性得到抛物线对称轴为直线x=,若x=1,则2a+b=0,故可能成立;由于当x=3时,y0,所以9a3b+c0,即9a+c3b解答:解:抛物线与y轴的交点在点(0,1)的下方c1;故A错误;抛物线开口向上,a0,抛物线的对称轴在y轴的右侧,x=0,b0;故B错误;抛物线对称轴为直线x=,若x=1,即2a+b=0;故C错误;当x=3时,y0,9a3b+c0,即9a+c3b故选:D点评:本题考查了二次函数的图象与系数的关系:二次函数y=ax2+bx+c(a0)的图象为抛物线,当a0,抛物线开口向
15、上;对称轴为直线x=;抛物线与y轴的交点坐标为(0,c);当b24ac0,抛物线与x轴有两个交点;当b24ac=0,抛物线与x轴有一个交点;当b24ac0,抛物线与x轴没有交点4如图,二次函y=ax2+bx+c(a0)图象的一部分,对称轴为直线x=,且经过点(2,0),下列说法:abc0;a+b=0;4a+2b+c0;若(2,y1),(,y2)是抛物线上的两点,则y1y2,其中说法正确的是()ABCD考点:二次函数图象与系数的关系专题:数形结合分析:根据抛物线开口方向、对称轴位置、抛物线与y轴交点位置求得a、b、c的符号;根据对称轴求出b=a;把x=2代入函数关系式,结合图象判断函数值与0的大
16、小关系;求出点(2,y1)关于直线x=的对称点的坐标,根据对称轴即可判断y1和y2的大小解答:解:二次函数的图象开口向下,a0,二次函数的图象交y轴的正半轴于一点,c0,对称轴是直线x=,=,b=a0,abc0故正确;由中知b=a,a+b=0,故正确;把x=2代入y=ax2+bx+c得:y=4a+2b+c,抛物线经过点(2,0),当x=2时,y=0,即4a+2b+c=0故错误;(2,y1)关于直线x=的对称点的坐标是(3,y1),又当x时,y随x的增大而减小,3,y1y2故正确;综上所述,正确的结论是故选:A点评:本题考查了二次函数的图象和系数的关系的应用,注意:当a0时,二次函数的图象开口向
17、上,当a0时,二次函数的图象开口向下5如图是二次函数y=ax2+bx+c图象的一部分,且过点A(3,0),二次函数图象的对称轴是x=1,下列结论正确的是()Ab24acBac0Cab+c0D4a+2b+c0考点:二次函数图象与系数的关系专题:数形结合分析:根据抛物线与x轴有两个交点有b24ac0可对A进行判断;由抛物线开口向下得a0,由抛物线与y轴的交点在x轴上方得c0,则可对B进行判断;根据抛物线的对称性得到抛物线与x轴的另一个交点为(1,0),所以ab+c=0,则可对C选项进行判断;由于x=2时,函数值大于0,则有4a+2b+c0,于是可对D选项进行判断解答:解:抛物线与x轴有两个交点,b
18、24ac0,即b24ac,所以A选项正确;抛物线开口向下,a0,抛物线与y轴的交点在x轴上方,c0,ac0,所以B选项错误;抛物线过点A(3,0),二次函数图象的对称轴是x=1,抛物线与x轴的另一个交点为(1,0),ab+c=0,所以C选项错误;当x=2时,y0,4a+2b+c0,所以D选项错误故选:A点评:本题考查了二次函数的图象与系数的关系:二次函数y=ax2+bx+c(a0)的图象为抛物线,当a0,抛物线开口向上;对称轴为直线x=;抛物线与y轴的交点坐标为(0,c);当b24ac0,抛物线与x轴有两个交点;当b24ac=0,抛物线与x轴有一个交点;当b24ac0,抛物线与x轴没有交点6二
19、次函数y=ax2+bx1(a0)的图象经过点(1,1),则代数式1ab的值为()A3B1C2D5考点:二次函数图象上点的坐标特征专题:整体思想分析:把点(1,1)代入函数解析式求出a+b,然后代入代数式进行计算即可得解解答:解:二次函数y=ax2+bx1(a0)的图象经过点(1,1),a+b1=1,a+b=2,1ab=1(a+b)=12=1故选:B点评:本题考查了二次函数图象上点的坐标特征,整体思想的利用是解题的关键7将抛物线y=x2平移得到抛物线y=(x+2)2,则这个平移过程正确的是()A向左平移2个单位B向右平移2个单位C向上平移2个单位D向下平移2个单位考点:二次函数图象与几何变换分析
20、:根据图象左移加,可得答案解答:解:将抛物线y=x2平移得到抛物线y=(x+2)2,则这个平移过程正确的是向左平移了2个单位,故选:A点评:本题考查了二次函数图象与几何变换,函数图象平移规律是:左加右减,上加下减8将抛物线y=(x1)2+3向左平移1个单位,得到的抛物线与y轴的交点坐标是()A(0,2)B(0,3)C(0,4)D(0,7)考点:二次函数图象与几何变换专题:几何变换分析:先根据顶点式确定抛物线y=(x1)2+3的顶点坐标为(1,3),再利用点的平移得到平移后抛物线的顶点坐标为(0,3),于是得到移后抛物线解析式为y=x2+3,然后求平移后的抛物线与y轴的交点坐标解答:解:抛物线y
21、=(x1)2+3的顶点坐标为(1,3),把点(1,3)向左平移1个单位得到点的坐标为(0,3),所以平移后抛物线解析式为y=x2+3,所以得到的抛物线与y轴的交点坐标为(0,3)故选:B点评:本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式9如果将抛物线y=x2向右平移1个单位,那么所得的抛物线的表达式是()Ay=x21By=x2+1Cy=(x1)2Dy=(x+1)2考点:二次函数图象与几何变换专题:几何变换分析:先得
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021届中考数学总复习 十七 二次函数精练精析2 华东师大版 2021 中考 数学 复习 二次 函数 精练 华东师大
限制150内