《关于高中数学说课稿集锦5篇.docx》由会员分享,可在线阅读,更多相关《关于高中数学说课稿集锦5篇.docx(7页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、关于高中数学说课稿集锦5篇关于高中数学说课稿集锦5篇 作为一名人民教师,时常需要编写说课稿,说课稿有利于教学水平的提高,有助于教研活动的开展。那么问题来了,说课稿应该怎么写?下面是小编收集整理的高中数学说课稿5篇,希望对大家有所帮助。 高中数学说课稿篇1 大家好,今天我向大家说课的题目是正弦定理。下面我将从以下几个方面介绍我这堂课的教学设计。 一教材分析 本节知识是必修五第一章解三角形的第一节内容,与初中学习的三角形的边和角的基本关系有密切的联系与判定三角形的全等也有密切联系,在日常生活和工业生产中也时常有解三角形的问题,而且解三角形和三角函数联系在高考当中也时常考一些解答题。因此,正弦定理和
2、余弦定理的知识非常重要。 根据上述教材内容分析,考虑到学生已有的认知结构心理特征及原有知识水平,制定如下教学目标: 认知目标:在创设的问题情境中,引导学生发现正弦定理的内容,推证正弦定理及简单运用正弦定理与三角形的内角和定理解斜三角形的两类问题。 能力目标:引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,培养学生的创新意识和观察与逻辑思维能力,能体会用向量作为数形结合的工具,将几何问题转化为代数问题。 情感目标:面向全体学生,创造平等的教学氛围,通过学生之间、师生之间的交流、合作和评价,调动学生的主动性和积极性,给学生成功的体验,激发学生学习的兴趣。 教学重点:正弦定理的内容,正弦定
3、理的证明及基本应用。 教学难点:正弦定理的探索及证明,已知两边和其中一边的对角解三角形时判断解的个数。 二教法 根据教材的内容和编排的特点,为是更有效地突出重点,空破难点,以学业生的发展为本,遵照学生的认识规律,本讲遵照以教师为主导,以学生为主体,训练为主线的指导思想,采用探究式课堂教学模式,即在教学过程中,在教师的启发引导下,以学生独立自主和合作交流为前提,以“正弦定理的发现”为基本探究内容,以生活实际为参照对象,让学生的思维由问题开始,到猜想的得出,猜想的探究,定理的推导,并逐步得到深化。突破重点的手段:抓住学生情感的兴奋点,激发他们的兴趣,鼓励学生大胆猜想,积极探索,以及及时地鼓励,使他
4、们知难而进。另外,抓知识选择的切入点,从学生原有的认知水平和所需的知识特点入手,教师在学生主体下给以适当的提示和指导。突破难点的方法:抓住学生的能力线联系方法与技能使学生较易证明正弦定理,另外通过例题和练习来突破难点 三学法: 指导学生掌握“观察猜想证明应用”这一思维方法,采取个人、小组、集体等多种解难释疑的尝试活动,将自己所学知识应用于对任意三角形性质的探究。让学生在问题情景中学习,观察,类比,思考,探究,概括,动手尝试相结合,体现学生的主体地位,增强学生由特殊到一般的数学思维能力,形成了实事求是的科学态度,增强了锲而不舍的求学精神。 四教学过程 第一:创设情景,大概用2分钟 第二:实践探究
5、,形成概念,大约用25分钟 第三:应用概念,拓展反思,大约用13分钟 (一)创设情境,布疑激趣 “兴趣是最好的老师”,如果一节课有个好的开头,那就意味着成功了一半,本节课由一个实际问题引入,“工人师傅的一个三角形的模型坏了,只剩下如右图所示的部分,A=47,B=53,AB长为1m,想修好这个零件,但他不知道AC和BC的长度是多少好去截料,你能帮师傅这个忙吗?”激发学生帮助别人的热情和学习的兴趣,从而进入今天的学习课题。 (二)探寻特例,提出猜想 1激发学生思维,从自身熟悉的特例(直角三角形)入手进行研究,发现正弦定理。 2那结论对任意三角形都适用吗?指导学生分小组用刻度尺、量角器、计算器等工具
6、对一般三角形进行验证。 3让学生总结实验结果,得出猜想: 在三角形中,角与所对的边满足关系 这为下一步证明树立信心,不断的使学生对结论的认识从感性逐步上升到理性。 (三)逻辑推理,证明猜想 1强调将猜想转化为定理,需要严格的理论证明。 2鼓励学生通过作高转化为熟悉的直角三角形进行证明。 3提示学生思考哪些知识能把长度和三角函数联系起来,继而思考向量分析层面,用数量积作为工具证明定理,体现了数形结合的数学思想。 4思考是否还有其他的方法来证明正弦定理,布置课后练习,提示,做三角形的外接圆构造直角三角形,或用坐标法来证明 (四)归纳总结,简单应用 1让学生用文字叙述正弦定理,引导学生发现定理具有对
7、称和谐美,提升对数学美的享受。 2正弦定理的内容,讨论可以解决哪几类有关三角形的问题。 3运用正弦定理求解本节课引引入的三角形零件边长的问题。自己参与实际问题的解决,能激发学生知识后用于实际的价值观。 (五)讲解例题,巩固定理 1例1。在ABC中,已知A=32,B=81.8,a=42.9cm.解三角形. 例1简单,结果为唯一解,如果已知三角形两角两角所夹的边,以及已知两角和其中一角的对边,都可利用正弦定理来解三角形。 2例2.在ABC中,已知a=20cm,b=28cm,A=40,解三角形. 高中数学说课稿篇2 尊敬的各位专家、评委: 上午好! 今天我说课的课题是人教A版必修1第二章第二节对数函
8、数。 我尝试利用新课标的理念来指导教学,对于本节课,我将以“教什么,怎么教,为什么这样教”为思路,从教材分析、目标分析、教法学法分析、教学过程分析和评价分析五个方面来谈谈我对教材的理解和教学的设计,敬请各位专家、评委批评指正。 一、教材分析 地位和作用 本章学习是在学生完成函数的第一阶段学习(初中)的基础上,进行第二阶段的函数学习。而对数函数作为这一阶段的重要的基本初等函数之一,它是在学生已经学习了指数函数及对数的内容,这为过渡到本节的学习起着铺垫作用。“对数函数”这节教材,是在没有学习反函数的基础上研究的指数函数和对数函数的自变量和因变量之间的关系。同时对数函数作为常用数学模型在解决社会生活
9、中的实例有着广泛的应用,本节课的学习为学生进一步学习,参加生产和实际生活提供必要的基础知识。 二、目标分析 (一)、教学目标 根据对数函数在教材内容中的地位与作用,结合学情分析,本节课教学应实现如下的教学目标: 1、知识与技能 (1)、进一步体会函数是描述变量之间的依赖关系的重要数学模型; (2)、理解对数函数的概念、掌握对数函数的图像和性质; (3)、由实际问题出发,培养学生探索知识和抽象概括知识等方面的能力。 2、过程与方法 引导学生观察,探寻变量和变量的对应关系,通过归纳、抽象、概括,自主建构对数函数的概念;体验结合旧知识探索新知识,研究新问题的快乐。 3、情感态度与价值观 通过对对数函
10、数函数图像和性质的探究过程,培养学生发现问题,探索问题,不断超越的创新品质。在民主、和谐的教学气氛中,促进师生的情感交流。 (二)教学重点、难点及关键 1、重点:对数函数的概念、图像和性质;在教学中只有突出这个重点,才能使教材脉络分明,才能有利于学生联系旧知识,学习新知识。 2、难点:底数a对对数函数的图像和性质的影响。 关键对数函数与指数函数的类比教学。 由指数函数的图像过渡到对数函数的图像,通过类比分析达到深刻地了解对数函数的图像及其性质是掌握重点和突破难点的关键,在教学中一定要使学生的思考紧紧围绕图像,数形结合,加强直观教学,使学生能形成以图像为根本,以性质为主体的知识网络,同时在立体的
11、讲解中,重视加强题组的设计和变形,使教学真正体现出由浅入深,由易到难,由具体到抽象的特点,从而突破重点、突破难点。 三、教法、学法分析 (一)、教法 教学过程是教师和学生共同参与的过程,启发学生自主性学习,充分调动学生的积极性、主动性;有效地渗透数学思想方法,提高学生素质。根据这样的原则和所要完成的教学目标,并为激发学生的学习兴趣,我采用如下的教学方法: 1、启发引导学生思考、分析、实验、探索、归纳; 2、采用“从特殊到一般”、“从具体到抽象”的方法; 3、体现“对比联系”、“数形结合”及“分类讨论”的思想方法; 4、投影仪演示法。 在整个过程中,应以学生看,学生想,学生议,学生练为主体,教师
12、在学生仔细观察、类比、想象的基础上通过问题串的形式加以引导点拨,与指数函数性质对照,归纳,整理,只有这样,才能唤起学生对原有知识的回忆,自觉地找到新旧知识的联系,使新学知识更牢固,理解更深刻。 (二)、学法 教给学生方法比教给学生知识更重要,本节课注重调动学生积极思考、主动探索,尽可能地增加学生参与教学活动的时间和空间,我进行了以下学法指导: 1、对照比较学习法:学习对数函数,处处与指数函数相对照; 2、探究式学习法:学生通过分析、探索,得出对数函数的定义; 3、自主性学习法:通过实验画出函数图像、观察图像自得其性质; 4、反馈练习法:检验知识的应用情况,找出未掌握的内容及其差距。 四、教学过
13、程分析 (一)、教学过程设计 1、创设情境,提出问题。 在某细胞分裂过程中,细胞个数y是分裂次数x的函数y=2x,因此,知道x的值(输入值是分裂次数)就能求出y的值(输出值为细胞的个数),这样就建立了一个细胞个数和分裂次数x之间的函数关系式。 问题一:这是一个怎样的函数模型类型呢? 设计意图 复习指数函数 问题二:现在我们来研究相反的问题,如果知道了细胞的个数y,如何求分裂的次数x呢?这将会是我们研究的哪类问题? 设计意图 为了引出对数函数 问题三:在关系式x=log2y每输入一个细胞的个数y的值,是否一定都能得到唯一一个分裂次数x的值呢? 设计意图 (1)、为了让学生更好地理解函数; (2)
14、、为了让学生更好地理解对数函数的概念。 2、引导探究,建构概念。 (1)、对数函数的概念: 同样,在前面提到的发射性物质,经过的时间x年与物质剩余量y的关系式为y=0.84x,我们也可以把它改成对数式x=log0.84y,其中x年夜可以看作物质剩余量y的函数,可见这样的问题在现实生活中还是不少的。 设计意图 前面的问题情景的底数为2,而这个问题情景的底数是0.84,我认为这个情景并不是多余的,其实它暗示了对数函数的底数与指数函数的底数一样有两类。 但是在习惯上,我们用x表示自变量,用y表示函数值。 问题一:你能把以上两个函数表示出来吗? 问题二:你能得到此类函数的一般式吗? 设计意图 体现出了
15、由特殊到一般的数学思想 问题三:在y=logax中,a有什么限制条件吗?请结合指数式给以解释。 问题四:你能根据指数函数的定义给出对数函数的定义吗? 问题五:x=logay与y=ax中的x,y的相同之处是什么?不同之处是什么? 设计意图 前四个问题是为了引导出对数函数的概念,然而,光有前四个问题还是不够的,学生最容易忽略或最不容易理解的是函数的定义域,所以设计这个问题是为了让学生更好地理解对数函数的定义域。 (2)、对数函数的图像与性质 问题:有了研究指数函数的经历,你觉得下面该学习什么内容了? 设计意图 提示学生进行类比学习 合作探究1:借助计算器在同一直角坐标系中画出下列两组函数的图像,并观察各族函数图像,探求他们之间的关系。 y=2x;y=log2xy=()x,y=logx 合作探究2:当a0,a1,函数y=ax与y=logax图像之间有什么关系? 设计意图 在这儿体现“从特殊到一般”、“从具体到抽象”的方法。 合作探究3:分析你所画的两组函数的图像,对照指数函数的性质,总结归纳对数函数的性质。 设计意图 学生讨论并交流各自的而发现成果,教师结合学生的交流,适时归纳总结,并板书对数函数的性质)。问题1:对数函数y=logax(a0,a1,)是否具有奇偶性,为什么? 问题2:对数函数y=logax(a0,a1,),当a1时,x取何值,y0,x取何值,y7
限制150内