高中数学必修二示范教案(直线与平面平行的判定)教案课时训练练习教案课件.doc
《高中数学必修二示范教案(直线与平面平行的判定)教案课时训练练习教案课件.doc》由会员分享,可在线阅读,更多相关《高中数学必修二示范教案(直线与平面平行的判定)教案课时训练练习教案课件.doc(10页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2.2 直线、平面平行的判定及其性质2.2.1 直线与平面平行的判定整体设计教学分析 空间里直线与平面之间的位置关系中,平行是一种非常重要的关系,它不仅应用较多,而且是学习平面与平面平行的基础.空间中直线与平面平行的定义是以否定形式给出的用起来不方便,要求学生在回忆直线与平面平行的定义的基础上探究直线与平面平行的判定定理.本节重点是直线与平面平行的判定定理的应用.三维目标1.探究直线与平面平行的判定定理.2.直线与平面平行的判定定理的应用.重点难点 如何判定直线与平面平行.课时安排 1课时教学过程复习 复习直线与平面平行的定义:如果直线与平面没有公共点叫做直线与平面平行.导入新课思路1.(情境
2、导入) 将一本书平放在桌面上,翻动书的封面,封面边缘AB所在直线与桌面所在平面具有什么样的位置关系?思路2.(事例导入) 观察长方体(图1),你能发现长方体ABCDABCD中,线段AB所在的直线与长方体ABCDABCD的侧面CDDC所在平面的位置关系吗?图1推进新课新知探究提出问题回忆空间直线与平面的位置关系.若平面外一条直线平行平面内一条直线,探究平面外的直线与平面的位置关系.用三种语言描述直线与平面平行的判定定理.试证明直线与平面平行的判定定理.活动:问题引导学生回忆直线与平面的位置关系.问题借助模型锻炼学生的空间想象能力.问题引导学生进行语言转换.问题引导学生用反证法证明.讨论结果:直线
3、在平面内、直线与平面相交、直线与平面平行.直线a在平面外,是不是能够断定a呢?不能!直线a在平面外包含两种情形:一是a与相交,二是a与平行,因此,由直线a在平面外,不能断定a.若平面外一条直线平行平面内一条直线,那么平面外的直线与平面的位置关系可能相交吗?既然不可能相交,则该直线与平面平行.直线与平面平行的判定定理:平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行.符号语言为:.图形语言为:如图2.图2证明:ab,a、b确定一个平面,设为.a,b.a,a,和是两个不同平面.b且b,=b.假设a与有公共点P,则P=b,即点P是a与b的公共点,这与已知ab矛盾.假设错误.故a.应用示
4、例思路1例1 求证空间四边形相邻两边中点的连线平行于经过另外两边的平面.已知空间四边形ABCD中,E、F分别是AB、AD的中点.求证:EF面BCD.活动:先让学生思考或讨论,后再回答,经教师提示、点拨,对回答正确的学生及时表扬,对回答不准确的学生提示引导考虑问题的思路.证明:如图3,连接BD,图3EF面BCD.所以,EF面BCD.变式训练 如图4,在ABC所在平面外有一点P,M、N分别是PC和AC上的点,过MN作平面平行于BC,画出这个平面与其他各面的交线,并说明画法.图4画法:过点N在面ABC内作NEBC交AB于E,过点M在面PBC内作MFBC交PB于F,连接EF,则平面MNEF为所求,其中
5、MN、NE、EF、MF分别为平面MNEF与各面的交线.证明:如图5,图5.所以,BC平面MNEF.点评:“见中点,找中点”是证明线线平行常用方法,而证明线面平行往往转化为证明线线平行.例2 如图6,已知AB、BC、CD是不在同一平面内的三条线段,E、F、G分别为AB、BC、CD的中点.图6求证:AC平面EFG,BD平面EFG.证明:连接AC、BD、EF、FG、EG.在ABC中,E、F分别是AB、BC的中点,ACEF.又EF面EFG,AC面EFG,AC面EFG.同理可证BD面EFG.变式训练 已知M、N分别是ADB和ADC的重心,A点不在平面内,B、D、C在平面内,求证:MN.证明:如图7,连接
6、AM、AN并延长分别交BD、CD于P、Q,连接PQ.图7M、N分别是ADB、ADC的重心,=2.MNPQ.又PQ,MN,MN.点评:利用平面几何中的平行线截比例线段定理,三角形的中位线性质等知识促成“线线平行”向“线面平行”的转化.思路2例题 设P、Q是边长为a的正方体AC1的面AA1D1D、面A1B1C1D1的中心,如图8,(1)证明PQ平面AA1B1B;(2)求线段PQ的长.图8(1)证法一:取AA1,A1B1的中点M,N,连接MN,NQ,MP,MPAD,MP=,NQA1D1,NQ=,MPND且MP=ND.四边形PQNM为平行四边形.PQMN.MN面AA1B1B,PQ面AA1B1B,PQ面
7、AA1B1B.证法二:连接AD1,AB1,在AB1D1中,显然P,Q分别是AD1,D1B1的中点,PQAB1,且PQ=.PQ面AA1B1B,AB1面AA1B1B,PQ面AA1B1B.(2)解:方法一:PQ=MN=.方法二:PQ=.变式训练 如图9,正方体ABCDA1B1C1D1中,E在AB1上,F在BD上,且B1E=BF.图9求证:EF平面BB1C1C.证明:连接AF并延长交BC于M,连接B1M.ADBC,AFDMFB.又BD=B1A,B1E=BF,DF=AE.EFB1M,B1M平面BB1C1C.EF平面BB1C1C.知能训练 已知四棱锥PABCD的底面为平行四边形,M为PC的中点,求证:PA
8、平面MBD.证明:如图10,连接AC、BD交于O点,连接MO,图10O为AC的中点,M为PC的中点,MO为PAC的中位线.PAMO.PA平面MBD,MO平面MBD,PA平面MBD.拓展提升 如图11,已知平行四边形ABCD和平行四边形ACEF所在的平面相交于AC,M是线段EF的中点.图11求证:AM平面BDE.证明:设ACBD=O,连接OE,O、M分别是AC、EF的中点,ACEF是平行四边形,四边形AOEM是平行四边形.AMOE.OE平面BDE,AM平面BDE,AM平面BDE.课堂小结知识总结:利用线面平行的判定定理证明线面平行.方法总结:利用平面几何中的平行线截比例线段定理,三角形的中位线性
9、质等知识促成“线线平行”向“线面平行”的转化.作业 课本习题2.2 A组3、4.设计感想 线面关系是线线关系和面面关系的桥梁和纽带,线面平行的判定是高考考查的重点,多年来,高考立体几何第一问往往考查线面平行的判定.本节不仅选用了大量的传统经典题目,而且还选取了近几年的高考题目.学生通过这些优秀题目的训练,不仅可以熟练掌握线面平行的判定,而且将大大增强学好数学的信心.下课啦,咱们来听个小故事吧:活动目的:教育学生懂得“水”这一宝贵资源对于我们来说是极为珍贵的,每个人都要保护它,做到节约每一滴水,造福子孙万代。活动过程:1.主持人上场,神秘地说:“我让大家猜个谜语,你们愿意吗?”大家回答:“愿意!
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学 必修 示范 教案 直线 平面 平行 判定 课时 训练 练习 课件
限制150内